留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波辅助解离钒钛磁铁矿有限元分析及试验研究

周钰沣 钱功明 程翔宇

周钰沣, 钱功明, 程翔宇. 微波辅助解离钒钛磁铁矿有限元分析及试验研究[J]. 钢铁钒钛, 2021, 42(5): 126-131. doi: 10.7513/j.issn.1004-7638.2021.05.020
引用本文: 周钰沣, 钱功明, 程翔宇. 微波辅助解离钒钛磁铁矿有限元分析及试验研究[J]. 钢铁钒钛, 2021, 42(5): 126-131. doi: 10.7513/j.issn.1004-7638.2021.05.020
Zhou Yufeng, Qian Gongming, Cheng Xiangyu. FEM analysis and experimental study of microwave assisted separation of vanadium-titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 126-131. doi: 10.7513/j.issn.1004-7638.2021.05.020
Citation: Zhou Yufeng, Qian Gongming, Cheng Xiangyu. FEM analysis and experimental study of microwave assisted separation of vanadium-titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 126-131. doi: 10.7513/j.issn.1004-7638.2021.05.020

微波辅助解离钒钛磁铁矿有限元分析及试验研究

doi: 10.7513/j.issn.1004-7638.2021.05.020
基金项目: 中央引导地方科技发展专项(湖北省科技厅)(编号:2019ZYYD060)
详细信息
    作者简介:

    周钰沣(1997—),男,湖北恩施人,硕士研究生,主要从事矿物加工方面的研究,E-mail:Zhouyufeng@wust.edu.cn;

    通讯作者:

    钱功明,湖北黄冈人,副教授,博士,硕士研究生导师,主要从事矿物加工方面的教学及研究工作,E-mail:qiangongming@wust.edu.cn

  • 中图分类号: TF041, TM924.76

FEM analysis and experimental study of microwave assisted separation of vanadium-titanomagnetite

  • 摘要: 以攀西钒钛磁铁矿为研究对象,通过有限元模拟,从理论上进行了微波对其选择性解离的可行性分析,开展了微波功率和处理时间对其解离的影响试验。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、BET比表面积检测、粒度分析等方法探究了微波处理对钒钛磁铁矿解离特性的影响规律。结果表明,在微波功率3 kW,处理时间40 s的条件下,矿石可快速升温至600 ℃;经微波处理后,矿石内部出现许多明显裂纹,矿石比表面积和孔隙体积分别提高46.04%和83.45%;磨矿产品中−0.160 mm和−0.074 mm粒级的产率可分别提高21.47%和16.68%,邦德磨矿功指数下降8.13%。磁选试验表明,微波处理可使精矿铁品位提高2.34%,铁回收率提高1.13%。由此说明微波处理有助于钒钛磁铁矿的选择性解离,提高选别效果。
  • 图  1  钒钛磁铁矿的物相分析及嵌布特征

    Figure  1.  XRD pattern (a) and distribution characteristics (b,c) of VTM

    图  2  有限元模型

    Figure  2.  The finite element model

    图  3  温度与主应力分布模拟

    Figure  3.  Simulation on distribution of temperature (a) and maximum (b) and minimum (c) principle stress

    图  4  不同功率下的矿石升温曲线

    Figure  4.  Rising temperature curve of VTM with different microwave power

    图  5  矿石热重分析结果

    Figure  5.  Result of thermo-gravimetric analysis of VTM

    图  6  矿石的SEM图

    Figure  6.  SEM images of VTM (a) before microwave treatment (b) after microwave treatment

    图  7  磨矿产品中−0.160 mm和−0.074 mm粒级的产率随磨矿时间的变化

    Figure  7.  Variation of the percentage of grinding product with size fractions of −0.160 mm and −0.074 mm with the grinding time

    图  8  磨矿时间9 min的未微波处理和微波处理矿样的粒度分布曲线

    Figure  8.  The particle size distribution of untreated and microwave-treated sample ground for 9 min

    图  9  未微波处理和微波处理矿样在不同磁场强度下磁选后的铁品位和回收率

    Figure  9.  Fe grade and recovery of magnetic separation of untreated and microwave-treated sample under different magnetic field intensity

    表  1  钒钛磁铁矿的主要化学成分

    Table  1.   Main chemical compositions of the VTM %

    SiO2Al2O3CaOMgOV2O5TFeTiO2
    25.599.947.956.720.3530.5311.52
    下载: 导出CSV

    表  2  矿物性能

    Table  2.   Properties of minerals used is this study

    矿物力学性能热学性能
    密度/(kg·m−3杨氏模量/GPa泊松比热膨胀系数
    α×106
    热导率/(W·m−1·K−1比热容/
    (J·kg−1·K−1
    磁铁矿5170230.30.2618.35.30586.1
    透辉石327784.40.2722.05.76711.0
    下载: 导出CSV

    表  3  矿石的比表面积和孔隙体积

    Table  3.   Specific surface area and pore volume of VTM

    样品比表面积/(m2·g−1)孔隙体积×103/(cm3·g−1)
    未微波处理0.58580.979
    微波处理0.85551.796
    下载: 导出CSV
  • [1] Tromans D. Mineral comminution: energy efficiency considerations[J]. Minerals Engineering, 2008,21(8):613−620. doi: 10.1016/j.mineng.2007.12.003
    [2] 段希祥. 选择性磨矿及其应用[M]. 北京: 冶金工业出版社, 1991: 32−42.

    Duan Xixiang. Selective grinding and its application[M]. Beijing: Metallurgical Industry Press, 1991: 32−42.
    [3] 金钦汉. 微波化学[M]. 北京: 冶金工业出版社, 1999: 282−291.

    Jin Qinhan. Microwave chemistry[M]. Beijing: Metallurgical Industry Press, 1999: 282−291.
    [4] Stankiewicz A. Energy matters: Alternative sources and forms of energy for intensification of chemical and biochemical processes[J]. Chemical Engineering Research & Design, 2006,84(7):511−521.
    [5] Wei Z, Chen J, Chang X, et al. Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite[J]. Applied Surface Science, 2014,300(1):171−177.
    [6] Omran M, Fabritius T, Mattila R. Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces[J]. Powder Technology, 2015,269:7−14. doi: 10.1016/j.powtec.2014.08.073
    [7] Omran M, Fa Britius T, Elmahdy A M, et al. Effect of microwave pre-treatment on the magnetic properties of iron ore and its implications on magnetic separation[J]. Separation & Purification Technology, 2014,136:223−232.
    [8] Zhang Bo, Qian Gongming, Huang Zili, et al. Experimental study of microwave-acid leaching assisted grinding of oolitic hematite[J]. Multipurpose Utilization of Mineral Resources, 2017,(5):41−44, 51. (张博, 钱功明, 黄自力, 等. 微波-酸浸方法助磨鲕状赤铁矿研究[J]. 矿产综合利用, 2017,(5):41−44, 51. doi: 10.3969/j.issn.1000-6532.2017.05.009
    [9] Yang Yushan, Yu Qing, Hu Nan, et al. Heap leaching uranium ore pretreated by microwave radiation[J]. Chinese Journal of Rare Metals, 2016,40(3):280−286. (杨雨山, 喻清, 胡南, 等. 微波加热预处理堆浸铀矿石[J]. 稀有金属, 2016,40(3):280−286.
    [10] Zhao Guojun, Zhao Qibin, Lan Jingzhi, et al. Characteristics of vanadium titanomagnetite resources and new benefication technology in Panxi area[J]. Modern Mining, 2017,33(7):198−200. (赵国君, 赵祺彬, 兰井志, 等. 攀西地区钒钛磁铁矿资源特点及选矿新技术[J]. 现代矿业, 2017,33(7):198−200. doi: 10.3969/j.issn.1674-6082.2017.07.060
    [11] 刘全军, 陈景河. 微波助磨与微波助浸技术[M]. 北京: 冶金工业出版社, 2005: 39−57.

    Liu Quanjun, Chen Jinghe. Microwave assisted grinding and microwave assisted leaching technology[M]. Beijing: Metallurgical Industry Press, 2005: 39−57.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回