留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展

陈玉勇 吴敬玺

陈玉勇, 吴敬玺. β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展[J]. 钢铁钒钛, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
引用本文: 陈玉勇, 吴敬玺. β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展[J]. 钢铁钒钛, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
Citation: Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001

β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展

doi: 10.7513/j.issn.1004-7638.2021.06.001
详细信息
    作者简介:

    陈玉勇(1956—),男,教授,博士生导师,主要从事TiAl合金及钛合金研究,E-mail:yychen@hit.edu.cn

  • 中图分类号: TF823,TG146.23

Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy

  • 摘要: β相凝固TiAl合金作为第三代TiAl基金属间化合物,凭借其突出的热变形优势,在航空航天及汽车制造等高端领域具有广阔的应用空间。然而,高温β相的引入在提高合金热变形能力的同时也使得组织演变和性能优化更为复杂。同时,受合金体系及本征脆性的影响,工业化进程相对迟缓。通过综述典型β相凝固TiAl合金的制备及加工工艺、组织与性能研究进展及工业化现状,系统分析了合金制备及加工工艺和成本优势,阐明了合金体系热变形、热处理及合金化对组织演变和性能优化的作用机制,指出合金工业化发展的限制环节及未来发展趋势。
  • 图  1  β相凝固TiAl合金的制备及加工

    Figure  1.  Processing and working of β-solidifying TiAl alloy

    图  2  典型β相凝固TiAl合金的铸态组织

    Figure  2.  Typical as-cast microstructure of β-solidifying TiAl alloys

    图  3  典型β相凝固TiAl合金的热变形组织

    Figure  3.  Typical hot deformed microstructure of β-solidifying TiAl alloys

    图  4  典型β相凝固TiAl合金的热处理组织

    Figure  4.  Typical heat treatment microstructure of β-solidifying TiAl alloys

    图  5  B、Y、C对β相凝固TiAl合金微观组织的影响

    Figure  5.  Effects of B, Y and C on microstructure of β-solidifying TiAl alloys

    图  6  V、Al、Nb对β相凝固TiAl合金微观组织的影响

    Figure  6.  Effects of V, Al and Nb on microstructure of β-solidifying TiAl alloys

    图  7  GTFTM发动机主要部件及最新应用现状

    Figure  7.  Main components and latest application status of GTFTM engine

    表  1  典型TiAl合金的热变形抗力及最佳热加工窗口

    Table  1.   Hot deformation resistance and optimal working windows of typical TiAl alloys

    合金体系制备方法变形抗力 (1100 ℃,0.01 s−1)/MPa最佳热加工窗口
    变形温度/℃应变速率/ s−1
    Ti-48Al-2Cr-2Nb铸态39512000.01
    Ti-47.5Al-2Cr-2NbPM2341150~12000.01~0.1
    Ti-43Al-9V-Y铸态1021200~12250.01~0.05
    Ti-43Al-9V-0.3YPM511100~1200≤1
    Ti-44Al-5Nb-1.0Mo铸态220
    Ti-44Al-8Nb-(W, B, Y)锻态3191180~12400.01~0.3
    Ti-44Al-5Nb-(Mo, V, B)铸态137
    Ti-43Al-3Mn-2Nb-0.1Y铸态16212000.01
    下载: 导出CSV

    表  2  典型TiAl合金的力学性能

    Table  2.   Mechanical properties of typical TiAl alloys

    合金体系制备方法室温拉伸性能高温拉伸性能
    抗拉强度/MPa延伸率/%抗拉强度/MPa延伸率/%温度/℃
    Ti-48-2-2铸态378.00.39
    Ti-48-2-2(PM)轧态424.30.89505.53.24723
    TNM-B1轧态880.71.04823.75.52673
    Ti-44Al-8Nb轧态975.00.24632.033.2800
    Ti-42Al-9V-0.3Y铸态530.00.63509.01.80700
    Ti-42Al-9V-0.3Y挤压1090.01.47837.07.30700
    Ti-43Al-9V-0.2Y轧态945.00.50550.080.0750
    Ti-43Al-2Cr-1.5Mn锻态689.40.83449.75.98750
    下载: 导出CSV

    表  3  典型TiAl合金在不同条件下的氧化增重

    Table  3.   Oxidation weight gain of typical TiAl alloys under different conditions mg/cm2

    温度/℃Ti-48-2-2TNM-B1Ti-45Al-5.4V-3.6NbTi-45Al-8.5Nb
    20 h40 h100 h20 h40 h100 h20 h40 h80 h20 h40 h100 h
    600 0.030 0.045 0.052 0.079 0.040 0.051
    700 0.033 0.045 0.082 0.079 0.071 0.071
    800 0.911 1.137 1.540 0.243 0.324 0.530 6.178 8.404 11.571
    900 1.584 1.831 2.154 1.508 1.832 2.358 0.428 0.586 1.087
    1000 0.785 1.157 2.270
    下载: 导出CSV
  • [1] Hu H, Wu X Z, Wang R, et al. Phase stability, mechanical properties and electronic structure of TiAl alloying with W, Mo, Sc and Yb: first-principles study[J]. Journal of Alloys and Compounds, 2016,658:689−696. doi: 10.1016/j.jallcom.2015.10.270
    [2] Ostrovskaya O, Badini C, Baudana G, et al. Thermogravimetric investigation on oxidation kinetics of complex Ti-Al alloys[J]. Intermetallics, 2018,93:244−250. doi: 10.1016/j.intermet.2017.09.020
    [3] Qiu C H, Liu Y, Huang L, et al. Tuning mechanical properties for β(B2)-containing TiAl intermetallics[J]. Transactions of Nonferrous Metals Society of China, 2012,22:2593−2603. doi: 10.1016/S1003-6326(11)61505-7
    [4] Jiang H T, Zeng S W, Zhao A M, et al. Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Materials Science and Engineering A, 2016,661:160−167. doi: 10.1016/j.msea.2016.03.005
    [5] Raji S A, Popoola A, Pityana S L, et al. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review[J]. Heliyon, 2020,6(7):e04463. doi: 10.1016/j.heliyon.2020.e04463
    [6] Chen W, Li Z. Additive manufacturing of titanium aluminides[J]. Additive Manufacturing for the Aerospace Industry, 2019,11:235−263.
    [7] Mccullough C, Valencia J J, Levi C G, et al. Phase equilibria and solidification in Ti-Al alloys[J]. Acta Metallurgica, 1989,37(5):1321−1336. doi: 10.1016/0001-6160(89)90162-4
    [8] Oehring M, Stark A, Paul J D H, et al. Microstructural refinement of boron-containing β-solidifying γ-titanium aluminide alloys through heat treatments in the β phase field[J]. Intermetallics, 2013,32:12−20. doi: 10.1016/j.intermet.2012.08.010
    [9] Erdely P, Staron P, Stark A, et al. In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo solid solution[J]. Acta Materialia, 2019,164:110−121. doi: 10.1016/j.actamat.2018.10.042
    [10] Zhang Y, Wang X P, Kong F T, et al. Microstructure, texture and mechanical properties of Ti-43Al-9V-0.2Y alloy hot-rolled at various temperatures[J]. Journal of Alloys and Compounds, 2019,777:795−805. doi: 10.1016/j.jallcom.2018.10.362
    [11] Zhang Y, Wang X P, Kong F T, et al. A high-performance β-solidifying TiAl alloy sheet: Multi-type lamellar microstructure and phase transformation[J]. Materials Characterization, 2018,138:136−144. doi: 10.1016/j.matchar.2018.02.005
    [12] Zhang Y, Wang X P, Kong F T, et al. A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain[J]. Materials Letters, 2018,214:182−185. doi: 10.1016/j.matlet.2017.12.002
    [13] Zhang D D, Chen Y Y, Zhang G Q, et al. Hot deformation behavior and microstructural evolution of PM Ti43Al9V0.3Y with fine equiaxed γ and B2 grain microstructure[J]. Materials, 2020,13(4):896. doi: 10.3390/ma13040896
    [14] Liu G H, Li T R, Wang X Q, et al. Effect of alloying additions on work hardening, dynamic recrystallization, and mechanical properties of Ti-44Al-5Nb-1Mo alloys during direct hot-pack rolling[J]. Materials Science and Engineering A, 2020,773:138838. doi: 10.1016/j.msea.2019.138838
    [15] Hu D, Yang C, Huang A, et al. Solidification and grain refinement in Ti45Al2Mn2Nb1B[J]. Intermetallics, 2012,22:68−76. doi: 10.1016/j.intermet.2011.11.003
    [16] Kuang J P, Harding R A, Campbell J. Examination of defects in gamma titanium aluminide investment castings[J]. Cast Metals, 2000,13(3):125−134. doi: 10.1080/13640461.2000.11819395
    [17] Tetsui T. Development of a TiAl turbocharger for passenger vehicles[J]. Materials Science and Engineering A, 2002,329-331(1):582−588.
    [18] Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy[J]. Intermetallics, 2014,44:128−140. doi: 10.1016/j.intermet.2013.09.010
    [19] Bazhenov V E, Kuprienko V S, Fadeev A V, et al. Influence of Y and Zr on TiAl43Nb4Mo1B0.1 titanium aluminide microstructure and properties[J]. Materials Science and Technology, 2020,36(5):548−555. doi: 10.1080/02670836.2020.1716493
    [20] Schmoelzer T, Mayer S, Sailer C, et al. In situ diffraction experiments for the investigation of phase fractions and ordering temperatures in Ti-44Al-(3~7) Mo alloys[J]. Advanced Engineering Materials, 2011,13(4):306−311. doi: 10.1002/adem.201000263
    [21] Zhou H T, Kong F T, Wang X P, et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W, B, Y) alloy with nearly lamellar microstructure[J]. Intermetallics, 2017,81:62−72. doi: 10.1016/j.intermet.2017.02.026
    [22] Zhou H T, Kong F T, Wu K, et al. Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties[J]. Materials and Design, 2017,121:202−212. doi: 10.1016/j.matdes.2017.02.053
    [23] Zhou H T, Kong F T, Wang X P, et al. High strength in high Nb containing TiAl alloy sheet with fine duplex microstructure produced by hot pack rolling[J]. Journal of Alloys and Compounds, 2016,695:3495−3502.
    [24] Xu R R, Li M Q. γ→β phase transformation in Ti-42.9Al-4.6Nb–2Cr[J]. Intermetallics, 2021,133:107169. doi: 10.1016/j.intermet.2021.107169
    [25] Gao Q, Wang Z, Zhang L Q, et al. Joining of β-γ TiAl alloys containing high content of niobium by pulse current diffusion bonding[J]. Intermetallics, 2021,133:107184. doi: 10.1016/j.intermet.2021.107184
    [26] Wu X H. Review of alloy and process development of TiAl alloys[J]. Intermetallics, 2006,14(10-11):1114−1122. doi: 10.1016/j.intermet.2005.10.019
    [27] Aguilar J, Schievenbusch A, Kättlitz O. Investment casting technology for production of TiAl low pressure turbine blades-process engineering and parameter analysis[J]. Intermetallics, 2011,19:757−761. doi: 10.1016/j.intermet.2010.11.014
    [28] Kothari K, Radhakrishnan R, Wereley N M. Advances in gamma titanium aluminides and their manufacturing techniques[J]. Progress in Aerospace Sciences, 2012,55:1−16. doi: 10.1016/j.paerosci.2012.04.001
    [29] Gupta R K, Pant B, Sinha P P. Theory and practice of γ+α2 Ti aluminide: A review[J]. Transactions of the Indian Institute of Metals, 2014,67(2):143−165. doi: 10.1007/s12666-013-0334-y
    [30] Su Y Q, Guo J J, Jia J, et al. Composition control of a TiAl melt during the induction skull melting (ISM) process[J]. Journal of Alloys and Compounds, 2002,334(1-2):261−266. doi: 10.1016/S0925-8388(01)01766-2
    [31] Singh V, Mondal C, Kumar A, et al. High temperature compressive flow behavior and associated microstructural development in a β-stabilized high Nb-containing γ-TiAl based alloy[J]. Journal of Alloys and Compounds, 2019,778:573−585.
    [32] Zhang S Z, Kong F T, Chen Y Y, et al. Phase transformation and microstructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J]. Intermetallics, 2012,31:208−216. doi: 10.1016/j.intermet.2012.07.009
    [33] Fang H Z, Chen R R, Liu Y L, et al. Effects of niobium on phase composition and improving mechanical properties in TiAl alloy reinforced by Ti2AlC[J]. Intermetallics, 2019,115:106630. doi: 10.1016/j.intermet.2019.106630
    [34] Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb-TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
    [35] Fu P X, Kang X H, Ma Y C, et al. Centrifugal casting of TiAl exhaust valves[J]. Intermetallics, 2008,16(2):130−138. doi: 10.1016/j.intermet.2007.08.007
    [36] Cheng X, Yuan C, Blackburn S, et al. The influence of ZrO2 concentration in an yttria-based face coat for investment casting a Ti-45Al-2Mn-2Nb-0.2TiB alloy using a sessile drop method[J]. Metallurgical and Materials Transactions A, 2015,46(3):1328−1336. doi: 10.1007/s11661-014-2724-0
    [37] Cheng X, Yuan C, Blackburn S, et al. Influence of Al2O3 concentration in yttria based face coats for investment casting Ti-45Al-2Mn-2Nb-0.2TiB alloy[J]. Materials Science and Technology, 2014,30(14):1758−1764. doi: 10.1179/1743284713Y.0000000467
    [38] Trzaska Z, Bonnefont G, Fantozzi G, et al. Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing[J]. Acta Materialia, 2017,135:1−13. doi: 10.1016/j.actamat.2017.06.004
    [39] Cobbinah P V, Matizamhuka W R. Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys[J]. Advances in Materials Science and Engineering, 2019,(2):1−21.
    [40] Wang Y H, Lin J P, He Y H, et al. Microstructures and mechanical properties of Ti-45Al-8.5Nb-(W, B, Y) alloy by SPS-HIP route[J]. Materials Science and Engineering A, 2008,489:56−61.
    [41] Xu G, Jiang S D, Cao F Y, et al. A β-solidifying TiAl alloy reinforced with ultra-fine Y-rich precipitates[J]. Scripta Materialia, 2021,192:55−60. doi: 10.1016/j.scriptamat.2020.10.010
    [42] Jabbar H, Monchoux J P, Thomas M, et al. Improvement of the creep properties of TiAl alloys densified by spark plasma sintering[J]. Intermetallics, 2014,46:1−3. doi: 10.1016/j.intermet.2013.10.019
    [43] Srivastava D, Hu D, Chang I, et al. The influence of thermal processing route on the microstructure of some TiAl-based alloys[J]. Intermetallics, 1999,7(10):1107−1112. doi: 10.1016/S0966-9795(99)00029-1
    [44] Kan W, Chen B, Peng H, et al. Formation of columnar lamellar colony grain structure in a high Nb-TiAl alloy by electron beam melting[J]. Journal of Alloys and Compounds, 2019,809:151673. doi: 10.1016/j.jallcom.2019.151673
    [45] Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014,214(9):1852−1860. doi: 10.1016/j.jmatprotec.2014.04.002
    [46] Rittinghaus S K, Ramirez V, Zielinski J, et al. Oxygen gain and aluminum loss during laser metal deposition of intermetallic TiAl[J]. Journal of Laser Applications, 2019,31(4):1−12.
    [47] Imayev V M, Imayev R M, Kuznetsov A V, et al. Superplastic properties of Ti-45.2Al-3.5(Nb, Cr, B) sheet material rolled below the eutectoid temperature[J]. Materials Science & Engineering A, 2003,348(1-2):15−21.
    [48] Zhang S Z, Zhang C J, Du Z X, et al. Microstructure and tensile properties of hot fogred high Nb containing TiAl based alloy with initial near lamellar microstructure[J]. Materials Science and Engineering A, 2015,642:16−21. doi: 10.1016/j.msea.2015.06.066
    [49] Kim Y W, Dimiduk D M. Progress in the understanding of gamma titanium aluminides[J]. JOM, 1991,43(8):40−47. doi: 10.1007/BF03221103
    [50] Cho H S, Nam S W, Hwang S K, et al. Tensile creep deformation and fracture behaviors of the lamellar TiAl alloy of elemental powder metallurgy[J]. Scripta Materialia, 1997,36(11):1295−1301. doi: 10.1016/S1359-6462(96)00493-9
    [51] Carneiro T, Kim Y W. Evaluation of ingots and alpha-extrusions of gamma alloys based on Ti-45Al-6Nb[J]. Intermetallics, 2005,13(9):1000−1007. doi: 10.1016/j.intermet.2004.12.008
    [52] Tetsui T, Shindo K, Kaji S, et al. Fabrication of TiAl components by means of hot forging and machining[J]. Intermetallics, 2005,13(9):971−978. doi: 10.1016/j.intermet.2004.12.012
    [53] Tetsui T, Shindo K, Kobayashi S, et al. Strengthening a high-strength TiAl alloy by hot-forging[J]. Intermetallics, 2003,11(4):299−306. doi: 10.1016/S0966-9795(02)00245-5
    [54] Donald S, Kim Y W. Sheet rolling and performance evaluation of beta gamma (β-γ) alloys [C]// Ti-2007 Science and Engineering. Kyoto, Japan: The Japan Institute of Metals, 2007.
    [55] Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy[J]. Materials Science and Engineering A, 2013,571:199−206. doi: 10.1016/j.msea.2013.02.005
    [56] Li T R, Liu G H, Xu M, et al. Effects of hot-pack rolling process on microstructure, high-temperature tensile properties, and deformation mechanisms in hot-pack rolled thin Ti-44Al-5Nb-(Mo, V, B) sheets[J]. Materials Science and Engineering A, 2019,764:138197. doi: 10.1016/j.msea.2019.138197
    [57] Gerling R, Bartels A, Clemens H, et al. Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing[J]. Intermetallics, 2004,12(3):275−280. doi: 10.1016/j.intermet.2003.10.005
    [58] Das G, Kestler H, Clemens H, et al. Sheet gamma TiAl: Status and opportunities[J]. JOM, 2004,56(11):42−45. doi: 10.1007/s11837-004-0251-y
    [59] Cui N, Wu Q Q, Bi K X, et al. Effect of heat treatment on microstructures and mechanical properties of a novel β-solidifying TiAl alloy[J]. Materials, 2019,12(10):1672. doi: 10.3390/ma12101672
    [60] Clemens H, Wallgram W, Kremmer S, et al. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability[J]. Advanced Engineering Materials, 2008,10(8):707−713. doi: 10.1002/adem.200800164
    [61] Wu Q Q, Cui N, Xiao X H, et al. Hot deformation behavior and microstructural evolution of a novel-solidifying Ti-43Al-3Mn-2Nb-0.1Y alloy[J]. Materials, 2019,12:2172. doi: 10.3390/ma12132172
    [62] Su Y J, Kong F T, Chen Y Y, et al. Microstructure and mechanical properties of large size Ti-43Al-9V-0.2Y alloy pancake produced by pack-forging[J]. Intermetallics, 2013,34:29−34. doi: 10.1016/j.intermet.2012.11.004
    [63] Bolz S, Oehring M, Lindemann J, et al. Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions[J]. Intermetallics, 2015,58:71−83. doi: 10.1016/j.intermet.2014.11.008
    [64] Jiang Z G, Chen B, Liu K, et al. Effects of boron on phase transformation of high Nb containing TiAl-based alloy[J]. Intermetallics, 2007,15(5-6):738−743. doi: 10.1016/j.intermet.2006.10.028
    [65] Han J C, Xiao S L, Tian J, et al. Grain refinement by trace TiB2 addition in conventional cast TiAl-based alloy[J]. Materials Characterization, 2015,106:112−122. doi: 10.1016/j.matchar.2015.05.020
    [66] Han J C, Xiao S L, Tian J, et al. Microstructure characterization, mechanical properties and toughening mechanism of TiB2-containing conventional cast TiAl-based alloy[J]. Materials Science and Engineering A, 2015,645:8−19. doi: 10.1016/j.msea.2015.07.092
    [67] Chen Y Y, Kong F T, Han J C, et al. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy[J]. Intermetallics, 2005,13(3-4):263−266. doi: 10.1016/j.intermet.2004.07.014
    [68] Li M G, Xiao S L, Chen Y Y, et al. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys[J]. Journal of Alloys and Compounds, 2019,775:441−448. doi: 10.1016/j.jallcom.2018.09.397
    [69] Fang H Z, Chen R R, Yang Y, et al. Role of graphite on microstructural evolution and mechanical properties of ternary TiAl alloy prepared by arc melting method[J]. Materials and Design, 2018,156:300−310. doi: 10.1016/j.matdes.2018.06.048
    [70] Takeyama M, Kobayashi S. Physical metallurgy for wrought gamma titanium aluminides: Microstructure control through phase transformations[J]. Intermetallics, 2005,13(9):993−999. doi: 10.1016/j.intermet.2004.12.014
    [71] Fang H Z, Chen R R, Chen X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019,104:43−51. doi: 10.1016/j.intermet.2018.10.017
    [72] Chen X F, Tang B, Liu Y, et al. Dynamic recrystallization behavior of the Ti-48Al-2Cr-2Nb alloy during isothermal hot deformation[J]. Progress in Natural Science:Materials International, 2019,29(5):587−594. doi: 10.1016/j.pnsc.2019.08.004
    [73] Bao Y, Yang D Y, Liu N, et al. High temperature deformation behavior and processing map of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B alloy using gas atomization powders[J]. Journal of Iron and Steel Research(International), 2017,24(4):81−87.
    [74] Kong F T, Cui N, Chen Y Y, et al. The hot deformation behavior of Ti-43A1-9V-Y alloy[J]. Acta Metallurgica Sinica, 2013,49(11):1363−1368. doi: 10.3724/SP.J.1037.2013.00513
    [75] Li T R, Liu G H, Xu M, et al. Flow stress prediction and hot deformation mechanisms in Ti-44Al-5Nb-(Mo, V, B) alloy[J]. Materials, 2018,11(10):2044. doi: 10.3390/ma11102044
    [76] Jiao Y, Wu T D, Zhang L J, et al. Effect of heat treatment on microstructure and mechanical properties of Ti48Al2Cr2Nb1B alloy[J]. Titanium Industry Progress, 2018,35(3):26−29.
    [77] Sallot P, Monchoux J P, Joulié S, et al. Impact of β-phase in TiAl alloys on mechanical properties after high temperature air exposure[J]. Intermetallics, 2020,119:106729. doi: 10.1016/j.intermet.2020.106729
    [78] Cui N, Wu Q Q, Bi K X, et al. Effect of multi-directional forging on the microstructure and mechanical properties of β-solidifying TiAl alloy[J]. Materials, 2019,12(9):1381. doi: 10.3390/ma12091381
    [79] Mengis L, Ulrich A S, Watermeyer P, et al. Oxidation behaviour and related microstructural changes of two β0-phase containing TiAl alloys between 600 °C and 900 °C[J]. Corrosion Science, 2021,178:109085. doi: 10.1016/j.corsci.2020.109085
    [80] Chen Y Y, Yang F, Kong F T, et al. Microstructure, mechanical properties, hot deformation and oxidation behavior of Ti-45Al-5.4V-3.6Nb-0.3Y alloy[J]. Journal of Alloys and Compounds, 2010,498(1):95−101. doi: 10.1016/j.jallcom.2010.03.118
    [81] Lu X, He X B, Zhang B, et al. High-temperature oxidation behavior of TiAl-based alloys fabricated by spark plasma sintering[J]. Journal of Alloys and Compounds, 2009,478(1-2):220−225. doi: 10.1016/j.jallcom.2008.11.134
    [82] Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys[J]. Intermetallics, 2011,19(2):131−136. doi: 10.1016/j.intermet.2010.08.029
    [83] Jiang G H, Zhao C Z, Yu J J, et al. Effect of Cr on microstructure and oxidation behavior of TiAl-based alloy with high Nb[J]. China Foundry, 2018,15(1):25−30.
    [84] Liu X P, Kai Y, Wang Z X, et al. Effect of Mo-alloyed layer on oxidation behavior of TiAl-based alloy[J]. Vacuum, 2013,89(1):209−214.
    [85] Pan Y, Lu X, Hayat M D, et al. Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys[J]. Corrosion Science, 2020,166:108449. doi: 10.1016/j.corsci.2020.108449
    [86] Vojtěch D, Popela T, Kubásek J, et al. Comparison of Nb-and Ta-effectiveness for improvement of the cyclic oxidation resistance of TiAl-based intermetallics[J]. Intermetallics, 2011,19(4):493−501. doi: 10.1016/j.intermet.2010.11.025
    [87] Yao T H, Liu Y, Liu B, et al. Influence of carburization on oxidation behavior of high Nb contained TiAl alloy[J]. Surface & Coatings Technology, 2015,277:210−215.
    [88] Panov D O, Sokolovsky V S, Stepanov N D, et al. Oxidation resistance and thermal stability of a β-solidified γ-TiAl based alloy after nitrogen ion implantation[J]. Corrosion Science, 2020,177:109003. doi: 10.1016/j.corsci.2020.109003
    [89] Yu L D, Thongtem S, Vilaithong T, et al. Modification of tribology and high-temperature behavior of Ti-47Al intermetallic alloy nitrided by N ion implantation[J]. Surface & Coatings Technology, 2000,128(1):410−417.
    [90] Zhao B, Wu J S, Sun J. Effect of nitridation on the oxidation behavior of TiAl-based intermetallic alloys[J]. Intermetallics, 2001,9:697−703. doi: 10.1016/S0966-9795(01)00054-1
    [91] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016,33(4-5):549−559. doi: 10.1080/09603409.2016.1183068
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  46
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回