留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2对高铝高炉渣性能和结构的影响研究

闫华 刘华军 陈布新 扈玫珑

闫华, 刘华军, 陈布新, 扈玫珑. TiO2对高铝高炉渣性能和结构的影响研究[J]. 钢铁钒钛, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
引用本文: 闫华, 刘华军, 陈布新, 扈玫珑. TiO2对高铝高炉渣性能和结构的影响研究[J]. 钢铁钒钛, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
Yan Hua, Liu Huajun, Chen Buxin, Hu Meilong. Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
Citation: Yan Hua, Liu Huajun, Chen Buxin, Hu Meilong. Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018

TiO2对高铝高炉渣性能和结构的影响研究

doi: 10.7513/j.issn.1004-7638.2022.02.018
基金项目: 国家重大专项研发计划项目(2018YFC190050404)。
详细信息
    作者简介:

    闫华(1982—),男,重庆人,高级工程师,主要研究方向为冶金工程及工程设计,E-mail:54927517@qq.com

    通讯作者:

    扈玫珑(1980—),女,甘肃白银人,教授,主要研究方向为冶金工程,E-mail:hml@cqu.edu.cn

  • 中图分类号: TF534.1

Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag

  • 摘要: 随着国内各钢铁企业高炉配加经济性较高的高铝原料的增加,炉渣中Al2O3含量增加,渣铁流动性变差,给高炉冶炼带来一系列问题。以CaO-SiO2-Al2O3-MgO-TiO2五元渣系为研究对象,通过相图理论计算结合试验研究和炉渣结构分析,研究了高铝渣中不同TiO2含量(低钛:5%,中钛:15%,高钛:25%)对高铝高炉渣黏度、熔化性温度的影响,并通过炉渣结构研究解析了影响炉渣物化性能的原因。结果表明:固定碱度R2为1.25,TiO2质量分数增加至25%过程中,炉渣熔化温度先下降后增高,当TiO2质量分数为7%时,炉渣液相析出相由斜长石类的钙铝硅酸盐(Ca2Al2SiO7)转变为高熔点钛酸钙(CaTiO3),其熔点为1975 ℃,炉渣熔化温度增加;TiO2含量由低钛5%增加至高钛25%时,炉渣黏度和熔化性温度均降低。温度越高,炉渣流动性越好,渣中TiO2以[TiO6]8-八面体结构存在,可使渣中复杂硅氧网状结构解体;TiO2含量由5%增加至25%时,炉渣中复杂结构单元Si(Q2 + Q3)的含量降低,简单结构单元Si(Q0 + Q1)的含量升高,Si(Q2 + Q3)/Si (Q0 + Q1)降低,炉渣结构简单化,即炉渣中无论是在低钛、中钛、还是高钛含量,TiO2在炉渣中起炉渣修饰子作用,对降低炉渣黏度、改善炉渣流动性有积极作用,可作为高铝冶炼调控手段之一。
  • 图  1  CaO-SiO2-17 %Al2O3-8 %MgO-TiO2五元渣系液相线

    Figure  1.  Liquidus diagram of five-component CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  2  黏度试验装置

    Figure  2.  Viscosity test device

    图  3  CaO-SiO2-17%Al2O3-8 %MgO-TiO2 五元渣系液相投影

    Figure  3.  Liquid phase projection of five-component CaO-SiO2-17 %Al2O3-8%MgO-TiO2 slag system

    图  4  五元渣系熔化温度随TiO2含量变化曲线

    Figure  4.  Temperature change curve of the five-component slag system with TiO2 increasing

    图  5  五元渣系理论黏度计算图随TiO2变化曲线

    Figure  5.  Viscosity change curve of the five-component slag system with TiO2 increasing

    图  6  TiO2含量对CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系黏度的影响

    Figure  6.  Effect of w(TiO2) on viscosity of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  7  w(TiO2)对CaO-SiO2- 17%Al2O3-8%MgO-TiO2渣系熔化性温度的影响

    Figure  7.  Effect of w(TiO2) on melting temperature of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  8  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系黏温曲线(R2=1.25)

    Figure  8.  Viscosity temperature curve of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system (R2 = 1.25)

    图  9  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系Raman光谱

    Figure  9.  Raman spectra of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag

    图  10  CaO-SiO2-8%MgO-17%Al2O3-TiO2渣系Raman光谱分峰拟合

    Figure  10.  Raman spectral peak fitting of CaO-SiO2-8%MgO-17%Al2O3-TiO2 slag system

    图  11  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系炉渣各结构单元与TiO2含量的关系

    Figure  11.  Relationship between structural units of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag and TiO2 content

    表  1  CaO-SiO2-17 %Al2O3-8 %MgO-TiO2渣系黏度和熔化性温度测试结果

    Table  1.   Viscosity and melting temperature test results of CaO-SiO2-17 %Al2O3-8 %MgO-TiO2 slag system

    编号R2w/%
    CaOSiO2MgOTiO2Al2O3
    11.2538.8931.118517
    21.2536.1128.8981017
    31.2527.7822.2282517
    下载: 导出CSV

    表  2  熔渣结构单元拉曼光谱特征峰

    Table  2.   Raman-active vibrations for various structure units of slag

    结构单元NBO/T[Qn]波数/cm−1
    [SiO4]4− 4(Q0) 850~880
    [Si2O7]6− 3(Q1) 900~920
    [SiO3]2− 2(Q2) 950~980
    [Si2O7]2− 1(Q3) 1050~1100
    下载: 导出CSV
  • [1] Yu Wen, Ding Guoxuan, Fan Xiaopeng, et al. Study on mine geological ecological environment evaluation based on analytic hierarchy process fuzzy comprehensive model[J]. Three Gorges Ecological Environment Monitoring, 2021,6(2):26−35. (郁文, 丁国轩, 樊小鹏, 等. 基于层次分析-模糊综合模型的矿山地质生态环境评价研究[J]. 三峡生态环境监测, 2021,6(2):26−35.
    [2] Sun Changyu, Chen Yachun, Li Jing, et al. The effect of MgO on the desulfurization of high-aluminum blast furnace slag and its kinetic analysis[J]. Journal of Chongqing University, 2016,39(4):82−87. (孙长余, 陈亚春, 李静, 等. MgO对高铝高炉渣脱硫的影响及其动力学分析[J]. 重庆大学学报, 2016,39(4):82−87. doi: 10.11835/j.issn.1000-582X.2016.04.010
    [3] Kim J R, Lee Y S, Dong J M, et al. Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO[J]. ISIJ International, 2004,44(8):1291−1297. doi: 10.2355/isijinternational.44.1291
    [4] Kim G H, Sohn I. Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2[J]. Journal of Non-Crystalline Solids, 2012,358(12-13):1530−1537. doi: 10.1016/j.jnoncrysol.2012.04.009
    [5] Machin J S, Yee T B, Hanna D L. Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2[J]. Journal of the American Ceramic Society, 1952,35(12):322−325. doi: 10.1111/j.1151-2916.1952.tb13057.x
    [6] Tang X L, Zhang Z T, Guo M, et al. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of Al2O3 content[J]. Journal of Iron & Steel Research International, 2011,(2):1−17.
    [7] Kurunov I F, Loginov V N, Lyapin S S, et al. New technological solutions to protect the lining of blast-furnace hearths[J]. Metallurgist, 2007,51:425−433. doi: 10.1007/s11015-007-0077-2
    [8] Zhao Y. The impact of titanium on Skull formation in the blast furnace hearth[C]//In: AIST. org, editor. AISTech-2013. Pittsburgh, Pa, USA. 2014: 95-103.
    [9] Yuan Xiang, Zhang Jianliang, Mao Rui, et al. Viscosity and melting properties of blast furnace low titanium slag[J]. Journal of Process Engineering, 2014,14(4):664−670. (袁骧, 张建良, 毛瑞, 等. 高炉低钛渣粘度和熔化性能[J]. 过程工程学报, 2014,14(4):664−670.
    [10] Shi Lili, Li Rong, Long Ping, et al. Effect of Al2O3 and TiO2 content on viscous flow characteristics and mineral composition of titanium bearing blast furnace slag[J]. Shanxi Metallurgy, 2017,40(5):1−3. (施丽丽, 李容, 隆平, 等. Al2O3和TiO2含量对含钛高炉渣黏流特性及矿物组成的影响[J]. 山西冶金, 2017,40(5):1−3.
    [11] Yan Z, Pang Z, Lv X W, et al. Effect of TiO2 on the viscous behavior of high alumina blast furnace slag[C]//9th International Symposium on High-Temperature Metallurgical Processing. 2018: 725-733.
    [12] Wang Z, Shu Q F, Chou K. Viscosity of fluoride-free mold fluxes containing B2O3 and TiO2[J]. Steel Research International, 2013,84(8):766−776. doi: 10.1002/srin.201200256
    [13] Park H, Park J Y, Kim J H, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Research International, 2012,83(2):150−156. doi: 10.1002/srin.201100249
    [14] Xu Renze, Zhang Jianliang, Zhang Heshun, et al. Effect of TiO2 on properties of Jingtang blast furnace slag and thermodynamic analysis[J]. Iron and steel, 2017,52(9):104−109. (许仁泽, 张建良, 张贺顺, 等. TiO2对京唐高炉渣性能的影响及热力学分析[J]. 钢铁, 2017,52(9):104−109.
    [15] Nakamoto M, Tsugawa Y, Kiyose A, et al. Effect of TiO2 on the viscosity of molten slag in SiO2-CaO-MgO system[J]. Journal of High Temperature Society, 2007,32(1):74−77.
    [16] Chang Z Y, Jiao K X, Zhang J L, et al. Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis[J]. ISIJ International, 2018,58(12):2173−2179. doi: 10.2355/isijinternational.ISIJINT-2018-379
    [17] Zhang S, Zhang X, Peng H, et al. Structure analysis of CaO-SiO2-Al2O3-TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy[J]. Transactions of the Iron & Steel Institute of Japan, 2014,54(4):734−742.
    [18] Shi Chengbin, Zheng Dingli, Shin Seungho, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels[J]. International Journal of Minerals Metallurgy and Materials, 2017,24(1):18−24. doi: 10.1007/s12613-017-1374-9
    [19] Liang Xiaoping, Lu Dongxu, Wang Yu, et al. Computational simulation on the coordination structure of CaO-B2O3-SiO2-TiO2 mold fluxes system[J]. Journal of Chongqing University, 2015,38(5):135−141. (梁小平, 陆东旭, 王雨, 等. CaO-B2O3-SiO2-TiO2系保护渣配位结构的计算模拟[J]. 重庆大学学报, 2015,38(5):135−141. doi: 10.11835/j.issn.1000-582X.2015.05.020
    [20] Pang Zhengde, Lv Xuewei, Yan Zhiming, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag[J]. Iron and Steel, 2020,55(8):181−186. (庞正德, 吕学伟, 严志明, 等. 超高TiO2高炉渣黏度及熔化性温度[J]. 钢铁, 2020,55(8):181−186. doi: 10.13228/j.boyuan.issn0449-749x.20200201
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  16
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回