留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低品位钛铁矿选矿工艺研究

杨道广

杨道广. 低品位钛铁矿选矿工艺研究[J]. 钢铁钒钛, 2022, 43(3): 111-117. doi: 10.7513/j.issn.1004-7638.2022.03.018
引用本文: 杨道广. 低品位钛铁矿选矿工艺研究[J]. 钢铁钒钛, 2022, 43(3): 111-117. doi: 10.7513/j.issn.1004-7638.2022.03.018
Yang Daoguang. Study on beneficiation process of a low grade ilmenite in Panxi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 111-117. doi: 10.7513/j.issn.1004-7638.2022.03.018
Citation: Yang Daoguang. Study on beneficiation process of a low grade ilmenite in Panxi[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 111-117. doi: 10.7513/j.issn.1004-7638.2022.03.018

低品位钛铁矿选矿工艺研究

doi: 10.7513/j.issn.1004-7638.2022.03.018
详细信息
    作者简介:

    杨道广(1986—),男,硕士研究生,主要从事钒钛磁铁矿选矿相关科研工作,E-mail:365794635@qq.com

  • 中图分类号: TF823,TD92

Study on beneficiation process of a low grade ilmenite in Panxi

  • 摘要: 某低品位钒钛磁铁矿,TiO2品位为6.15%,矿物组成复杂,为充分回收其中的钛铁矿,针对钛的赋存状态及粒级分布特点,制定了强磁磁选预抛尾、重选提质、细磨弱磁选除铁、反浮选脱硫与一粗一扫两精浮钛组合工艺流程,研究了磁感应强度、磁介质大小、脉动冲程、磨矿浓度、磨矿时间、浮选调整剂及捕收剂用量等的影响,在获得最优工艺条件的基础上,按“一段强磁抛尾—两段重选抛尾—磨矿—除铁—浮选”的工艺流程进行了闭路试验。试验获得了TiO2品位48.22%,回收率为35.19%的钛精矿。矿石中主要有用的矿物钛铁矿得到了有效的回收。
  • 图  1  重选试验流程

    Figure  1.  Flow chart of gravity separation test

    图  2  浮选流程示意

    Figure  2.  Flow chart of flotation

    图  3  一粗两精浮选流程示意

    Figure  3.  Flow chart of one rough-two fine flotation

    图  4  全流程试验工艺流程

    Figure  4.  Flow chart of the whole process

    表  1  原矿化学多元素分析

    Table  1.   Chemical elements analysis of raw ore %

    TFeFeOFe2O3TiO2PSSiO2Al2O3V2O5
    17.1413.524.786.150.0420.5436.9310.750.061
    下载: 导出CSV

    表  2  钛的化学物相分析

    Table  2.   Phase analysis of titanium %

    含量分布率
    钛铁矿4.2669.27
    钛磁铁矿0.6911.27
    硅酸盐1.2019.51
    合计6.15100.00
    下载: 导出CSV

    表  3  矿物组成分析

    Table  3.   Analysis of mineral composition %

    钛磁铁矿钛铁矿硫化物钛辉石斜长石绿泥石等
    4.768.641.4541.2235.878.06
    下载: 导出CSV

    表  4  试验原料筛析结果

    Table  4.   Screening results of test material

    粒级/mm粒级产率/%粒级品位/%金属分布率/%
    0.45011.051.693.07
    −0.450~0.28016.143.188.44
    −0.280~0.18021.755.3319.07
    −0.180~0.15417.028.0922.65
    −0.154~0.10015.499.7224.77
    −0.100~0.0744.135.333.62
    −0.074~0.0458.578.411.85
    −0.045~0.0382.684.722.08
    −0.0383.178.534.44
    合计1006.07100
    下载: 导出CSV

    表  5  磁场强度条件试验

    Table  5.   Condition tests of Magnetic field intensity

    磁场强度/T原矿品位/%精矿品位/%尾矿品位/%精矿产率/%回收率/%
    1.26.227.981.3873.3394.08
    1.06.228.051.2573.0994.59
    0.86.228.611.1268.0994.25
    0.66.2210.611.2852.9590.32
    下载: 导出CSV

    表  6  磁介质对比试验

    Table  6.   Contrast tests of magnetic medium

    磁介质尺寸/mm原矿品位/%精矿品位/%尾矿品位/%精矿产率/%回收率/%
    36.2210.782.4944.9977.98
    46.2210.342.5647.0478.20
    下载: 导出CSV

    表  7  脉动冲次条件试验

    Table  7.   Condition tests of pulsating impulse

    脉动冲次/(次·min-1)原矿品位/%精矿品位/%尾矿品位/%精矿产率/%回收率/%
    2006.229.772.7849.2177.30
    2506.2210.342.5347.2578.54
    3006.2210.782.4944.9977.98
    3506.2210.542.6145.0977.14
    下载: 导出CSV

    表  8  重选试验结果

    Table  8.   Results of gravity separation test %

    试验条件原矿品位精矿品位尾矿品位精矿产率回收率
    一段重选10.5816.345.7345.7170.60
    二段重选16.3423.127.4856.6580.16
    下载: 导出CSV

    表  9  3 min磨矿浓度对比试验

    Table  9.   Contrast tests of 3 min grinding concentration

    粒级/mm粒级含量/%
    原矿70%浓度80%浓度
    +0.1842.5216.072.91
    +0.115.7931.4339.69
    0.07416.8533.3917.85
    −0.07416.2819.1139.55
    合计100100100
    下载: 导出CSV

    表  10  磨矿浓度80%条件下不同磨矿时间试验结果

    Table  10.   Test results of grinding time under grinding concentration of 80%

    粒级/mm不同磨矿时间下粒度分布比例 /%
    原矿2 min3 min5 min8 min
    +0.1842.526.542.910.380.83
    +0.115.7945.3339.6930.2018.68
    0.07416.8517.8417.8521.1119.59
    −0.07416.2830.3039.5548.3160.90
    合计100100100100100
    下载: 导出CSV

    表  11  重选精矿除铁试验

    Table  11.   Iron removal tests of concentrate by gravity separation %

    产品产率TiO2品位TFe品位
    原矿10023.12
    铁精矿8.9016.4541.85
    除铁尾矿91.1023.77
    下载: 导出CSV

    表  12  浮钛粗选硫酸用量条件试验

    Table  12.   Tests of sulfuric acid dosage for coarse separation of floating titanium

    硫酸用量/(g·t−1)产品品位/%产率/%回收率/%
    800浮硫精矿10.753.981.80
    钛精矿32.4867.6392.41
    尾矿4.8928.395.84
    原矿23.77100100.00
    1000浮硫精矿10.753.461.56
    钛精矿36.6857.8889.23
    尾矿5.6638.669.21
    原矿23.77100.00100.00
    1300浮硫精矿10.274.211.82
    钛精矿39.3150.5283.42
    尾矿7.7545.2714.76
    原矿23.77100100.00
    1600浮硫精矿11.033.271.52
    钛精矿41.6444.2277.43
    尾矿9.5352.5121.05
    原矿23.77100.00100.00
    下载: 导出CSV

    表  13  浮钛粗选捕收剂MOH用量条件试验

    Table  13.   Tests of MOH dosage for coarse separation of floating titanium

    捕收剂用量/(g·t−1)产品品位/%产率/%回收率/%
    1200浮硫精矿11.233.781.79
    钛精矿42.3645.4581.00
    尾矿8.2850.7717.68
    原矿23.77100100.00
    1500浮硫精矿10.813.461.55
    钛精矿39.8651.5086.36
    尾矿6.3845.0412.09
    原矿23.77100100.00
    1800浮硫精矿10.753.461.56
    钛精矿36.6857.8889.23
    尾矿5.6638.669.21
    原矿23.77100.00100.00
    2000浮硫精矿10.703.271.47
    钛精矿32.5767.8592.97
    尾矿4.6828.885.56
    原矿23.77100100.00
    下载: 导出CSV

    表  14  一粗两精开路试验

    Table  14.   Open circuit test of one rough-two fine flotation %

    产品品位产率回收率
    浮硫精矿10.63.651.62
    钛精矿48.1739.6379.74
    中110.329.524.10
    中228.134.234.96
    尾矿5.3442.979.57
    原矿23.94100100
    下载: 导出CSV

    表  15  全流程试验结果

    Table  15.   Results of the whole process %

    产品名称产率TiO2品位回收率
    钛精矿4.5848.2235.19
    尾矿95.424.2664.81
    原矿100.006.27100.00
    下载: 导出CSV
  • [1] Deng Guozhu. World titanium resources and their development and utilization[J]. Progress of Titanium Industry, 2002,(5):9−12. (邓国珠. 世界钛资源及其开发利用[J]. 钛工业进展, 2002,(5):9−12. doi: 10.3969/j.issn.1009-9964.2002.05.003

    Deng Guozhu. World titanium resources and their development and utilization [J]. Progress of titanium industry, 2002 (5): 9-12 doi: 10.3969/j.issn.1009-9964.2002.05.003
    [2] USDI, USGS. Critical mineral resources of the United States—economic and environmental geology and prospects for future supply[R]. 2017.
    [3] Chong Xiaoxiao, Luan Wenlou, Wang Fengxiang, et al. Overview of global titanium resources and titanium consumption trend in China[J]. Mineral Protection and Utilization, 2020,40(2):162−170. (崇霄霄, 栾文楼, 王丰翔, 等. 全球钛资源现状概述及我国钛消费趋势[J]. 矿产保护与利用, 2020,40(2):162−170.

    Chong Xiaoxiao, Luan Wenlou, Wang Fengxiang, et al. Overview of global titanium resources and titanium consumption trend in China [J]. Mineral protection and utilization, 2020, 40 (02): 162-170.
    [4] Sun Renbin, Wang Qiushu, Yuan Chunhua, et al. Analysis of global titanium resource situation[J]. China Mining, 2019,28(6):1−6,12. (孙仁斌, 王秋舒, 元春华, 等. 全球钛资源形势分析[J]. 中国矿业, 2019,28(6):1−6,12.

    Sun Renbin, Wang qiushu, Yuan Chunhua, et al. Analysis of global titanium resource situation [J]. China mining, 2019, 28 (06): 1-6 + 12
    [5] 邓陈雄. 基于矿物交互影响的低品位钛铁矿浮选分离基础研究[D]. 沈阳: 东北大学, 2015.

    Deng Chenxiong. Basic research on flotation separation of low-grade ilmenite based on mineral interaction [D]. Shengyang:Northeast University, 2015.
    [6] Xiao Liangchu, Wang Yong. Analysis of separation difficulties of Panzhihua Baima low grade ilmenite[J]. Modern mining, 2016,32(3):58−62. (肖良初, 王勇. 攀枝花白马低品位钛铁矿选别难点分析[J]. 现代矿业, 2016,32(3):58−62. doi: 10.3969/j.issn.1674-6082.2016.03.024

    Xiao Liangchu, Wang Yong. Analysis of separation difficulties of Panzhihua Baima low grade ilmenite [J]. Modern mining, 2016, 32 (03): 58-62 doi: 10.3969/j.issn.1674-6082.2016.03.024
  • 加载中
图(4) / 表(15)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  2
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回