Effects of heat treatment process on microstructure and iron loss of 0.25% Si non-oriented silicon steel sheets containing niobium
-
摘要: 向无取向硅钢中添加适量的铌元素,可以有效改善成品钢的显微组织和机械性能,但会对电磁性能产生不利影响。截至目前,尚不清楚铌元素在无取向硅钢中的存在形式、作用机理,以及在不同热处理工艺条件下对电磁性能的影响效果。研究结合0.25% Si含铌无取向硅钢生产实际,探讨了铌元素在钢中的存在形式、作用机理和影响效果,并借助热处理工艺优化以减轻铌元素对钢电磁性能的影响。结果表明,铌元素在钢中会形成百纳米级、数量众多的有害夹杂物,钉扎晶界和降低晶界扩散率,并推迟钢的再结晶开始温度和结束温度,因而,导致晶粒细化和铁损升高。随着钢中铌含量增加,钢的涡流损耗基本相当,但磁滞损耗不断增加。合理的热处理工艺,可以促进消除应力退火之后的晶粒尺寸长大,并在一定程度上减少磁滞损耗之间的差异。Abstract: The microstructure and mechanical properties can be greatly improved by adding proper niobium concentration in liquid steel, but the magnetic properties will sharply decrease as the increase of niobium concentration in non-oriented silicon steel sheets. So far, the formation state and effect mechanism of niobium element as well as its influence on the change of magnetic properties under different hot treatment technology are yet to clarify. In present work, the formation type of the Nb- containing inclusion and its negative effect was discussed based on 0.25% Si non-oriented silicon steel sheets containing niobium. It is expected that the proper heat treatment techniques can be used to decrease the harmful effect of the magnetic properties by niobium element. The results showed that, there is multiple harmful inclusions with hundreds of nanoscale in size, that can pin grain boundary and decrease grain boundary diffusion rate, and retard the started temperature and the finished temperature of recrystallization of the cold rolled steel sheets. Thus, the grain size will be refined and the iron loss will be poor. As the increase of niobium concentration, the eddy loss will be stable and the hysteresis loss will be increase, respectively. The suitable heat treatment techniques can improve the grain size after stress release annealing, and decrease the deviation of hysteresis loss for the different niobium concentrations as possible.
-
Key words:
- non-oriented silicon steel sheets /
- niobium element /
- heat treatment /
- microstructure /
- iron loss
-
表 1 SRA退火工艺对成品钢试样铁损的影响
Table 1. Effects of stress release annealing on iron loss in the finished steel samples under different Nb concentrations
条件 铁损P15/50/(W·kg−1) 0.000 5% Nb 0.005 1% Nb 0.008 3% Nb 工艺1 4.28 4.44 4.58 工艺2 3.27 3.61 3.99 工艺3 3.13 3.32 3.53 工艺4 3.10 3.15 3.31 注:工艺1-BF SRA;工艺2-750 ℃×2 h;工艺3-825 ℃×1 h;工艺4-825 ℃×2 h。 -
[1] (中信微合金化技术中心编译. 铌微合金化高性能结构钢[M]. 北京: 冶金工业出版社, 2011.)Zhongxin Microalloyed Technology Center Intercompilation. Niobium microaaloyed high performance structure steel[M]. Beijing: Metallurgy Industry Press, 2011. [2] Tian Fei, Wang Zhirong, Li Zhaodong. Strengthening mechanism of batch annealed Nb microalloyed steel for automobile[J]. Iron & Steel, 2015,50(9):76−80. (田飞, 王志荣, 李昭东. 罩式退火铌微合金化汽车钢的强化机理[J]. 钢铁, 2015,50(9):76−80. [3] Qiao Guiying, Hna Yang, Han Xiulin, et al. Microstructure and mechanical properties of welding heat affected zone of a high-Nb high strength pipeline steel[J]. Journal of Iron and Steel Research, 2014,26(10):40−45. (乔桂英, 韩杨, 韩秀林, 等. 高铌高强管线钢焊接热影响区的组织与性能[J]. 钢铁研究学报, 2014,26(10):40−45. [4] Liu Dongsheng, Li Qingliang. Microstructure and mechanical properties of 550 MPa yield-strength-class hot rolled plate steel[J]. Iron & Steel, 2011,46(4):53−58. (刘东升, 李庆亮. 热轧屈服强度550 MPa高强度钢板组织性能[J]. 钢铁, 2011,46(4):53−58. [5] Li Qiuhe, Wang Gang, Ying Chuantao, et al. Effect of finishing rolling temperature on the microstructure and mechanical properties of low Si-Mn-Nb hot rolled dual-phase steel strip[J]. Iron Steel Vanadium Titanium, 2018,39(3):139−143. (李秋鹤, 王刚, 应传涛, 等. 终轧温度对含铌低Si-Mn系热轧双相钢组织与性能的影响[J]. 钢铁钒钛, 2018,39(3):139−143. doi: 10.7513/j.issn.1004-7638.2018.03.026 [6] Zhang Ying, Fu Yunli, Wang Ruwu, et al. Inhibitors in high magnetic induction grain-oriented silicon steel[J]. China Metallurgy, 2008,18(11):4−6. (张颖, 傅耘力, 汪汝武, 等. 高磁感取向硅钢中的抑制剂[J]. 中国冶金, 2008,18(11):4−6. doi: 10.3969/j.issn.1006-9356.2008.11.002 [7] Yan Bin, Zhu Chengyi, Zhang Yunxiang. Effect of Nb on precipitation behavior of inhibitors in hot rolled plate of oriented silicon steel[J]. Hot Working Technology, 2019,48(1):14−16,21. (严彬, 朱诚意, 张云祥. Nb对取向硅钢热轧板中抑制剂析出行为的影响[J]. 热加工工艺, 2019,48(1):14−16,21. [8] Huang Jun, Luo Haiwen. Influence of annealing process on microstructures, mechanical and magnetic properties of Nb-containing high-strength non-oriented silicon steel[J]. Acta Metallurgica Sinica, 2018,54(3):377−384. (黄俊, 罗海文. 退火工艺对含Nb高强无取向硅钢组织及性能的影响[J]. 金属学报, 2018,54(3):377−384. [9] Xie Li, Lin Yuan, Zhang Wenkang. Effect of Nb on mechanical properties and magnetic properties of 0.5% silicon steel[J]. Hot Working Technology, 2016,45(24):62−64,67. (谢力, 林媛, 张文康. 铌对0.5% Si钢力学性能和磁性能的影响[J]. 热加工工艺, 2016,45(24):62−64,67. [10] (何忠治, 赵宇, 罗海文. 电工钢[M]. 北京: 冶金工业出版社, 2012.)He Zhongzhi, Zhao Yu, Luo Haiwen. Electrical steel[M]. Beijing: Metallurgical Industry Press, 2012. [11] Zhang Hongmei, Chen Yue, Sun Chengqian, et al. Thermodynamics and kinetics of precipitation for Nb bearing high strength IF steel with fine grain structure[J]. Transactions of Materials and Heat Treatment, 2015,36(4):226−231. (张红梅, 陈越, 孙成钱, 等. 含Nb细晶高强IF钢的析出热力学和动力学[J]. 材料热处理学报, 2015,36(4):226−231. [12] Liu Jiamei, Jin Donghao, Jia Yunke, et al. Effect of niobium on solid solution temperature of precipitates in oriented silicon steel[J]. Iron Steel Vanadium Titanium, 2019,40(4):138−143. (刘嘉美, 金东浩, 贾云柯, 等. 铌对取向硅钢中析出物固溶温度的影响[J]. 钢铁钒钛, 2019,40(4):138−143. doi: 10.7513/j.issn.1004-7638.2019.04.026 [13] (增井浩昭, 藤井宣意, 藤井浩康, 等. 高磁束密度方向性电磁钢板的制造方法, 日本专利: 特开平 08-199239[P]. 1996-08-06.)Hiroshi Masai, Yukiyo Fujii, Hiroko Fujii, et al. Method of high magnetic flux oriented electrical steel sheet, Japan Patent: 08-199239[P]. 1996-08-06. [14] Zhao Hu, Kang Yonglin, Liu Guangming, et al. Texture in extra-low carbon bake hardened steel[J]. Journal of Iron and Steel Research, 2007,19(11):47−50, 59. (赵虎, 康永林, 刘光明, 等. 超低碳烘烤硬化钢板的织构[J]. 钢铁研究学报, 2007,19(11):47−50, 59. [15] Fan Yongfei, Yu Hao, Sun Jing, et al. Study on precipitation and transition mechanisms from the magnetic properties of silicon steel during annealing[J]. International Journal of Minerals, Metallurgy and Materials, 2014,21(4):379−387. doi: 10.1007/s12613-014-0919-4 -