Influence of forming direction on properties of TC4 alloy during electron beam selective melting
-
摘要: 采用电子束选区熔化针对不同成形方向进行打印,利用扫描电子显微镜(SEM)和金相显微镜(OM)研究了电子束选区熔化成形Ti-6Al-4V合金的组织特征,获得了成形后Ti-6Al-4V合金力学性能,揭示了成形方向选择对力学性能的影响规律。结果表明:横向打印产品材料抗拉强度能够达到986 MPa、屈服强度能够到达880 MPa、延伸率能够到达11.2%,明显优于纵向打印产品材料的性能;横向打印材料在打印过程中冷却速度较快,β相先转化成α′马氏体,最后分解为α+β相组成的网篮组织;纵向打印材料在打印过程中材料被反复加热,最终形成魏氏组织(过热组织)。Abstract: Electron beam selective melting was used to print in different forming directions. Scanning electron microscope (SEM) and metallographic microscope (OM) were used to study the microstructure characteristics of Ti-6Al-4V alloy formed by electron beam selective melting. The mechanical properties of Ti-6Al-4V alloy after forming were obtained, and the influence of forming direction on mechanical properties of the alloy was revealed. The results show that the tensile strength, yield strength and elongation of the transverse printing products can reach 986 MPa, 880 MPa and 11.2% respectively, which are obviously better than those of the vertical printing products. The materials cool down faster in the transverse printing process, and the phase is transformed from β to α′ martensite and then decomposed into microstructure consisting of α+β phases. The materials are heated repeatedly during the vertical printing process, resulting in Widmanstaten structure (superheated structure).
-
Key words:
- Ti-6Al-4V /
- 3D printing /
- electron beam selective melting /
- forming direction /
- microstructure /
- mechanical properties
-
表 1 Ti-6Al-4V ELI粉末化学成分
Table 1. Chemical compositions of Ti-6Al-4V ELI powder
% Al V C Fe O N H Ti 6 4 0.03 0.1 0.1 0.01 0.003 Balance 表 2 试验工艺参数
Table 2. Process parameters
功率/W 速度/(mm·s−1) 直径/mm 扫描间距/mm 1500 450 0.5 0.1 表 3 拉力棒试样室温拉伸力学性能
Table 3. Tensile mechanical properties
试样编号 抗拉强度/MPa 屈服强度/MPa 延伸率 /% H1 937 882 8 H2 942 892 14.4 H3 930 867 11.2 平均值 936 880 11.2 V1 755 714 7.4 V2 816 790 10 V3 780 724 9 平均值 783 742.7 8.8 -
[1] Lai Qi, Li Junhan, Wu Enhui, et al. Research progress of electron beam vapor deposition[J]. Iron Steel Vanadium Titanium, 2020,41(4):76−81. (赖奇, 李俊翰, 吴恩辉, 等. 电子束气相沉积的研究进展[J]. 钢铁钒钛, 2020,41(4):76−81. [2] Lawrence S Gould. Options in rapid prototyping technology[J]. Automotive Design & Production, 2006,118(4):84−85. [3] Tong Shaohui, Li Dong, Deng Zenghui, et al. Effect of elective electron beam melting angle on microstructure of TC4 alloy[J]. Hot Working Technology, 2017,46(18):83−85. (童邵辉, 李东, 邓增辉, 等. 电子束选区熔化成形角度对TC4合金组织的影响[J]. 热加工工艺, 2017,46(18):83−85. [4] Yu Zhijun, Chen Zhuo, Qi Guangyuan, et al. Study on electrochemical corrosion properties of Ti-6Al-4V alloy by electron beam 3D printing[J]. Materials Progress in China, 2019,38(2):167−172. (余志君, 陈卓, 祁广源, 等. 电子束3D打印Ti-6Al-4V合金电化学腐蚀性能研究[J]. 中国材料进展, 2019,38(2):167−172. [5] Zhao Yongqing. Research and development of titanium alloy[J]. Progress in Titanium Industry, 2005,(4):1−7. (赵永庆. 钛合金的研究与开发[J]. 钛工业进展, 2005,(4):1−7. doi: 10.3969/j.issn.1009-9964.2005.04.001 [6] Zhao Yongqing, Xin Shewei, Wu Huan, et al. Effect of heat treatment on thermal stability of Ti40 flame retardant titanium alloy[J]. Rare Metal Materials and Engineering, 2008,(4):660−664. (赵永庆, 辛社伟, 吴欢, 等. 热处理对Ti40阻燃钛合金热稳定性能的影响[J]. 稀有金属材料与工程, 2008,(4):660−664. doi: 10.3321/j.issn:1002-185X.2008.04.022 [7] Gao Jing, Ning Xinglong. Recent application of titanium[J]. Light Metal, 2000,(11):48−51. (高敬, 宁兴龙. 钛应用近况[J]. 轻金属, 2000,(11):48−51. doi: 10.3969/j.issn.1002-1752.2000.11.014 [8] Yang Xing, Tang Huiping, He Weiwei, et al. Electron beam sintering rapid prototyping technology[J]. Titanium Industry Progress, 2007,(3):10−14. (杨鑫, 汤慧萍, 贺卫卫, 等. 电子束烧结快速成形技术[J]. 钛工业进展, 2007,(3):10−14. doi: 10.3969/j.issn.1009-9964.2007.03.003 [9] Ge Wenjun, Guo Chao, Lin Feng. Microstructures of components synthesized via electron beam selective melting using blended pre-alloyed powders of Ti6Al4V and Ti45Al7Nb[J]. Rare Metal Materials and Engineering, 2015,44(11):2623−2627. doi: 10.1016/S1875-5372(16)60006-1 -