留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维支撑的钾离子调谐TiC/TiO2层状异质结复合催化剂制备研究

丰雪帆 王化中 王小明 喻文瑞 杨宇 张福勤

丰雪帆, 王化中, 王小明, 喻文瑞, 杨宇, 张福勤. 碳纤维支撑的钾离子调谐TiC/TiO2层状异质结复合催化剂制备研究[J]. 钢铁钒钛, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009
引用本文: 丰雪帆, 王化中, 王小明, 喻文瑞, 杨宇, 张福勤. 碳纤维支撑的钾离子调谐TiC/TiO2层状异质结复合催化剂制备研究[J]. 钢铁钒钛, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009
Feng Xuefan, Wang Huazhong, Wang Xiaoming, Yu Wenrui, Yang Yu, Zhang Fuqin. Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009
Citation: Feng Xuefan, Wang Huazhong, Wang Xiaoming, Yu Wenrui, Yang Yu, Zhang Fuqin. Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 58-63. doi: 10.7513/j.issn.1004-7638.2021.03.009

碳纤维支撑的钾离子调谐TiC/TiO2层状异质结复合催化剂制备研究

doi: 10.7513/j.issn.1004-7638.2021.03.009
详细信息
    作者简介:

    丰雪帆,硕士研究生,主要从事轻质新能源材料光催化应用

    通讯作者:

    张福勤(1964—),教授,长期从事轻质纳米新能源材料、复合材料等新材料的基础研究和应用研究,E-mail:zhangfuqin@csu.edu.com

  • 中图分类号: TF823,TQ426

Preparation of carbon fiber supported layered TiC/TiO2 catalyst with potassium ion tuning

  • 摘要: 采用原位生长方法制备了一种碳纤维为载体,通过钾离子(K+)调谐的具有TiC/TiO2层状异质结的复合催化剂,用FE-SEM、XRD、Raman、XPS和AFM对制备的催化剂进行了表征,并进行了光催化降解污染物罗丹明B试验。研究表明钾离子对异质结的调谐对光催化效率有重要影响。在紫外-可见光催化降解过程中,CFs@TiC/TiO2对污染物RhB的去除率达到98%。经过3次循环使用后,该复合材料对污染物光催化去除效率仍大于90%,表明能重复稳定使用。K+协同的原位生长过程经过熔盐体系在碳纤维(CFs)表面生长TiC,并在KOH水溶液中进行水热反应,将部分TiC转化为钛酸钾纳米粒子,随后将钛酸钾纳米颗粒浸泡在稀释的HCl溶液中,将酸中的H+交换为钛酸钾中的K+经过热处理和脱水后,纳米颗粒形成片状锐钛矿型TiO2,最终形成碳纤维支撑的TiC/TiO2层状异质结的CFs@TiC/TiO2复合催化剂。钛酸钾纳米晶形成的花状结构具有较大的比表面积,这种结构为制备CFs@TiC/TiO2复合材料构建了结构特征和催化活性位点。
  • 图  1  CFs@TiC/TiO2光催化剂制备工艺流程

    Figure  1.  Schematic diagram of the process for constructing CFs@TiC/TiO2 catalyst

    图  2  (a) CFs,CFs@TiC,CFs@TiC/TiO2的XRD图谱,(b) CFs@TiC/TiO2的拉曼图谱

    Figure  2.  (a) XRD patterns of CFs,CFs@TiC,CFs@TiC/TiO2, (b) Raman spectrum of CFs@TiC/TiO2

    图  3  (a-f)为扫描电子显微镜(SEM)形貌: (a-b) CFs@TiC,(c-d) CFs@TiC/K2Ti6O13,(e-f) CFs@TiC/TiO2,(g-h) CFs@TiC/TiO2的AFM图,(I-J) Na+调谐的CFs@TiC/TiO2的AFM图[25]

    Figure  3.  SEM images of (a-b) CFs@TiC, (c-d) CFs@TiC/K2Ti6O13, (e-f) CFs@TiC/TiO2; (g-h) AFM images of CFs@TiC/TiO2, (I-J) AFM images of Na+ tunning CFs@TiC/TiO2[25]

    图  4  XPS谱图 (a) C 1s, (b) Ti 2p和(c) O 1s of CFs@TiC/TiO2

    Figure  4.  (a) C 1s XPS spectra, (b) Ti 2p XPS spectra and (c) O 1s XPS spectra of CFs@TiC/TiO2

    图  5  (a) CFs,CFs@TiC和CFs@TiC/TiO2在紫外-可见光照射下光催化降解RhB的C/C0;(b) CFs@TiC/TiO2在紫外-可见光下经过3轮光催化测试后的稳定性试验;c、d为在相同条件下测试的Na+调谐的CFs@TiC/TiO2的光催化降解性能(c)[25]和循环稳定性(d)[25]

    Figure  5.  (a) The rate of C/C0 catalytic degradation of RhB under UV-Vis irradiation of CFs, CFs@TiC and CFs@TiC/TiO2; (b) Repeating experiments of RhB with CFs@TiC/TiO2 after 3 cycles;Photocatalytic degradation activity (c) and stability testing (d) of Na+ tuning CFs@TiC/TiO2 with the uniform condition[25]

  • [1] Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis of a carbon @TiO2 dyade structure effectively promoting visible-light photocatalysis[J]. Adv. Mater., 2010,22:3317−3321. doi: 10.1002/adma.201000660
    [2] Mitchell J W, Gregory L E. Enhancement of overall plant growth, a new response to brassins[J]. Nat. New Biol., 1972,238:37−38.
    [3] Deng Q, Liu Y, Mu K, et al. Preparation and characterization of F-modified C-TiO2 and its photocatalytic properties[J]. Phys. Status Solidi Appl. Mater. Sci., 2015,212:691−697. doi: 10.1002/pssa.201431805
    [4] Zhang M, Wang Y, Zhang Y, et al. Conductive and elastic TiO2 nanofibrous aerogels: A new concept toward self-supported electrocatalysts with superior activity and durability[J]. Angew. Chemie - Int. Ed., 2020,59:23252−23260. doi: 10.1002/anie.202010110
    [5] Cargnello M, Gordon T R, Murray C B. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals[J]. Chem. Rev., 2014,114:9319−9345. doi: 10.1021/cr500170p
    [6] Zhou W, Li W, Wang J Q, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst[J]. J. Am. Chem. Soc., 2014,136:9280−9283. doi: 10.1021/ja504802q
    [7] Shen X, Yu R, Ma M, et al. Porous carbon-doped TiO2 on TiC nanostructures for enhanced photocatalytic hydrogen production under visible light[J]. J. Catal., 2017,347:36−44. doi: 10.1016/j.jcat.2016.11.041
    [8] Ou Y, Cui X, Zhang X, et al. Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media[J]. J. Power Sources, 2010,195:1365−1369. doi: 10.1016/j.jpowsour.2009.09.031
    [9] Hu Q, Seidelin Dam J, Pedersen C, et al. High-resolution mid-IR spectrometer based on frequency upconversion[J]. Opt. Lett., 2012,37:5232. doi: 10.1364/OL.37.005232
    [10] Shitova N B, Drozdov V A, Kolosov P E, et al. Distinctive features of supported catalysts prepared from platinum carbonyl clusters[J]. Kinet. Catal., 2000,41:720−728. doi: 10.1007/BF02754573
    [11] Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Adv. Mater., 2009,21:4087−4108. doi: 10.1002/adma.200803827
    [12] Son S, Hwang S H, Kim C, et al. Designed synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2013,5:4815−4820. doi: 10.1021/am400441v
    [13] Cheng H M, Chiu W H, Lee C H, et al. Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications[J]. J. Phys. Chem. C., 2008,112:16359−16364. doi: 10.1021/jp805239k
    [14] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nat. Mater., 2005,4:455−459. doi: 10.1038/nmat1387
    [15] Jiang C Y, Sun X W, Lo G Q, et al. Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode[J]. Appl. Phys. Lett., 2007,90:3−6.
    [16] Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells[J]. Nano Letters, 2007,7(8):2183−2187. doi: 10.1021/nl070160+
    [17] Prensky H D. Large-scale synthesis of six-nanometer-wide ZnO nanobelts[J]. Int. Endod. J., 1971,5:10−15. doi: 10.1111/j.1365-2591.1971.tb00034.x
    [18] Kar S, Dev A, Chaudhuri S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J. Phys. Chem. B., 2006,110:17848−17853. doi: 10.1021/jp0629902
    [19] Fu M, Zhou J, Xiao Q, et al. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J]. Adv. Mater., 2006,18:1001−1004. doi: 10.1002/adma.200502658
    [20] Wang Z L. Zinc oxide nanostructures: Growth, properties and applications[J]. J. Phys. Condens. Matter., 2004,16:829.
    [21] Grigoropoulos C P, Sung H J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell[J]. Nano Lett., 2011,11:666−671. doi: 10.1021/nl1037962
    [22] Koo H J, KimY J, Lee Y H, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells[J]. Adv. Mater., 2008,20:195−199. doi: 10.1002/adma.200700840
    [23] Usami A. Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells[J]. Sol. Energy Mater. Sol. Cells., 2000,64:73−83. doi: 10.1016/S0927-0248(00)00049-0
    [24] Wang Z S, Kawauchi H, Kashima T, et al. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J]. Coord. Chem. Rev., 2004,248:1381−1389. doi: 10.1016/j.ccr.2004.03.006
    [25] Lv B, Xia L, Yang Y, et al. Synthesis of nanostructured TiC/TiO2 with controllable morphology on carbon fibers as photocatalyst for degrading RhB and reducing Cr(VI) under visible light[J]. J. Mater. Sci., 2020,55:14953−14964. doi: 10.1007/s10853-020-05071-x
    [26] Dong Z J, Li X K, Yuan G M, et al. Synthesis in molten salts and formation reaction kinetics of tantalum carbide coatings on various carbon fibers[J]. Surface & Coatings Technology, 2012,212:169−179.
  • 加载中
图(5)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回