留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛磁铁海砂矿还原过程有价元素变化规律的研究

胡佩伟 胡超 胡兵 谢志诚 郑富强 刘臣

胡佩伟, 胡超, 胡兵, 谢志诚, 郑富强, 刘臣. 钒钛磁铁海砂矿还原过程有价元素变化规律的研究[J]. 钢铁钒钛, 2021, 42(5): 10-17. doi: 10.7513/j.issn.1004-7638.2021.05.002
引用本文: 胡佩伟, 胡超, 胡兵, 谢志诚, 郑富强, 刘臣. 钒钛磁铁海砂矿还原过程有价元素变化规律的研究[J]. 钢铁钒钛, 2021, 42(5): 10-17. doi: 10.7513/j.issn.1004-7638.2021.05.002
Hu Peiwei, Hu Chao, Hu Bing, Xie Zhicheng, Zheng Fuqiang, Liu Chen. Study on the regulation mechanism of valuable elements in the reduction process of vanadium-titanium magnetite marine placer[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 10-17. doi: 10.7513/j.issn.1004-7638.2021.05.002
Citation: Hu Peiwei, Hu Chao, Hu Bing, Xie Zhicheng, Zheng Fuqiang, Liu Chen. Study on the regulation mechanism of valuable elements in the reduction process of vanadium-titanium magnetite marine placer[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 10-17. doi: 10.7513/j.issn.1004-7638.2021.05.002

钒钛磁铁海砂矿还原过程有价元素变化规律的研究

doi: 10.7513/j.issn.1004-7638.2021.05.002
基金项目: 湖南省青年基金项目(2019JJ51007);湖湘青年英才项目(2020RC3092)
详细信息
    作者简介:

    胡超:胡佩伟(1983—),男,湖南双峰人,博士,副教授,主要从事钢铁冶金等研究,E-mail:pwhu@wust.edu.cn

    通讯作者:

    胡兵(1983—),男,湖南邵阳人,博士,高级工程师,主要从事钢铁冶金和直接还原等研究,E-mail:csu0206@163.com

  • 中图分类号: TF823,TD92

Study on the regulation mechanism of valuable elements in the reduction process of vanadium-titanium magnetite marine placer

  • 摘要: 以印尼某钒钛磁铁海砂矿为研究对象,通过XRD分析探明其主要成分和物相组成,并在热力学分析基础上探讨了该矿的还原特性和有价元素变化规律。利用微波加热同时以生物质炭作为直接还原的还原剂对海砂矿进行还原-磨选试验,微波加热有利于强化海砂矿的还原过程。结果表明,在C/Fe为0.6,还原焙烧温度1200 ℃下还原150 min,可获得金属化率为98.28%的还原产物;在矿浆浓度50%,磨矿时间为40 min,磁场强度为0.08 T的条件下,可获得铁品位为85.1%、铁回收率94.01%的精矿粉,以及TiO2品位为28.95%,回收率为71.98%,V2O5品位为2.14%,回收率为56.82%的尾矿粉,有效实现了铁和钒钛的分离富集。
  • 图  1  海砂矿XRD图谱

    Figure  1.  XRD diagram of marine placer

    图  2  试验工艺流程

    Figure  2.  Experimental process flow chart

    图  3  设备示意

    1-竖式微波炉;2-测温热电偶;3-导气管;4-坩埚;5-称重装置;6-还原回转电炉;7-控制器

    Figure  3.  Schematic diagram of the equipment

    图  4  固体碳还原铁氧化物及含钛铁氧化物的气相平衡关系

    Figure  4.  Gas phase equilibrium diagram for reduction of iron oxide and ferrotitanium oxide by solid carbon

    图  5  海砂矿中固体碳还原含钒氧化物的气相平衡关系

    Figure  5.  Gas phase equilibrium diagram for the reduction of vanadium-containing oxides by solid carbon in sea sand ore

    图  6  温度对还原产物金属化率的影响

    Figure  6.  Effect of temperature on the metallization ratio of reduced products

    图  7  温度对还原产物分离富集的影响

    Figure  7.  Effect of the temperature on the separation and enrichment of reduced products

    图  8  C/Fe对还原产物金属化率的影响

    Figure  8.  Effect of C/Fe on the metallization ratio of reduced products

    图  9  C/Fe对还原产物分离富集的影响

    Figure  9.  Effect of C/Fe on the separation and enrichment of reduced products

    图  10  时间对还原产物金属化率的影响

    Figure  10.  Effect of the time on the metallization ratio of reduced products

    图  11  时间对还原产物分离富集的影响

    Figure  11.  Effect of the time on the separation and enrichment of reduced products

    图  12  海砂矿还原质量平衡

    Figure  12.  Reduction mass balance diagram of marine sand ore

    图  13  海砂矿固态还原化学计算路径

    Figure  13.  Chemical calculation path for the solid reduction of marine sand ore

    表  1  海砂矿的主要化学成分

    Table  1.   Main chemical compositions of marine placer %

    TFeFeOFe2O3TiO2V2O5SiO2Al2O3CaOMgOMnOSP
    54.2729.0845.2710.880.684.013.670.483.680.440.060.03
    下载: 导出CSV

    表  2  海砂矿主要矿物含量

    Table  2.   Main mineral content of marine placer %

    钛磁铁矿钛赤铁矿钛铁矿辉石
    83.216.931.875.61
    下载: 导出CSV

    表  3  生物质炭工业分析

    Table  3.   Content analysis of the biochar %

    水分固定碳挥发分灰分
    6.5180.8115.653.54
    下载: 导出CSV
  • [1] Liu S S, Guo Y F, Qiu G Z, et al. Solid-state reduction kinetics and mechanism of pre-oxidized vanadium-titanium magnetite concentrate[J]. Transactions of Nonferrous Metals Society of China, 2014,24(10):3372-3377. doi: 10.1016/S1003-6326(14)63479-8
    [2] Yang Tao, Chen Hanyu, Song Fumei, et al. Research on developing and utilizing an indonesia beach iron sand[J]. Multipurpose Utilization of Mineral Resources, 2016,(2):29−33. (杨涛, 陈汉宇, 宋复梅, 等. 对印尼某海滨铁砂矿的开发利用研究[J]. 矿产综合利用, 2016,(2):29−33. doi: 10.3969/j.issn.1000-6532.2016.02.006
    [3] Sui Y L, Guo Y F, Travyanov A Y, et al. Reduction roasting-magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms[J]. Rare Metals, 2016,(35):954−960.
    [4] Yang S P, Wang J, Du X, et al. Study on melting separation for metalized pellet of vanadium-titanium magnetite and TiO2 enrichment[J]. Mining & Metallurgical Engineering, 2014,(34):87−88.
    [5] Guo Y F, Tang M J, Jiang T, et al. Research on the slag phase type of vanadium-titanium magnetite in pre-reduction/electric furnace smelting[C]//Processing in: 4th International Symposium on High-temperature Metallurgical Processing, TMS Annual Meeting, San Antonio, Texas, USA, 2013: 87-94.
    [6] Jena M S, Tripathy H K, Mohanty J K, et al. Roasting followed by magnetic separation: A process for beneficiation of titano-magnetite ore[J]. Separation Science & Technology, 2015,50(8):1221−1229.
    [7] 王伟, 董辉, 赵亮, 等. 钒钛磁铁矿提钒工艺综述[C]//第十届全国能源与热工学术年会. 中国金属学会能源与热工分会, 杭州: 2019.

    Wang Wei, Dong Hui, Zhao Liang, et al. Review on vanadium extraction from vanadium-titanium magnetite[C]//The 10th National Conference on Energy and Thermal Engineering. Energy and Thermal Engineering Branch of China Metal Society, Hangzhou: 2019.
    [8] Xi Gan, Lei Ying, Hu Kejun, et al. Application of vanadium abroad[J]. World Nonferrous Metals, 2000,(2):13−21. (锡淦, 雷鹰, 胡克俊, 等. 国外钒的应用概况[J]. 世界有色金属, 2000,(2):13−21.
    [9] 范鑫. 稀土掺杂改性水热合成纳米V2O5及在硫酸钒催化剂中的应用[D]. 贵阳: 贵州大学, 2019.

    Fan Xing. Hydrothermal synthesis of nano-V2O5 doped with Rare earth and its application in vanadium sulfate catalyst[D]. Guiyang: Guizhou University, 2019.
    [10] Qu Mingjun, Zhu Quanfang. Analysis of vanadium catalyst heating up and blowing in sulphuric acid plant[J]. Sulfuric Acid Industry, 2018,(11):20−22. (瞿明军, 朱全芳. 浅谈硫酸装置钒催化剂的升温和吹除[J]. 硫酸工业, 2018,(11):20−22. doi: 10.3969/j.issn.1002-1507.2018.11.007
    [11] Gao Yongzhang. Analysis of vanadium ore resources and supply and demand situation in China[J]. China Mining, 2019,28(z2):5−10. (高永璋. 中国钒矿资源及供需形势分析[J]. 中国矿业, 2019,28(z2):5−10.
    [12] Sun H Y, Adetoro A A, Pan F, et al. Effects of high-temperature preoxidation on the titanomagnetite ore structure and reduction behaviors in fluidized bed[J]. Metallurgical and Materials Transactions B, 2017,48(3):1898−1907. doi: 10.1007/s11663-017-0925-9
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  359
  • HTML全文浏览量:  39
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回