留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末冶金法制备Ti4AlN3及其性能研究

郭辉 李喜坤 宋园园 孙骞 黄轶文

郭辉, 李喜坤, 宋园园, 孙骞, 黄轶文. 粉末冶金法制备Ti4AlN3及其性能研究[J]. 钢铁钒钛, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
引用本文: 郭辉, 李喜坤, 宋园园, 孙骞, 黄轶文. 粉末冶金法制备Ti4AlN3及其性能研究[J]. 钢铁钒钛, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
Guo Hui, Li Xikun, Song Yuanyuan, Sun Qian, Huang Yiwen. Preparation and properties of Ti4AlN3 by powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
Citation: Guo Hui, Li Xikun, Song Yuanyuan, Sun Qian, Huang Yiwen. Preparation and properties of Ti4AlN3 by powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008

粉末冶金法制备Ti4AlN3及其性能研究

doi: 10.7513/j.issn.1004-7638.2021.05.008
基金项目: 国家自然科学基金项目(51274143)
详细信息
    作者简介:

    郭辉(1997—),男,内蒙古乌兰察布人,硕士研究生,主要从事先进陶瓷材料的制备、加工和应用的工作,E-mail:gentgh@163.com;

    通讯作者:

    李喜坤(1971—),男,辽宁沈阳人,博士,副教授,主要从事先进陶瓷材料的制备、加工和应用的工作,E-mail:kunxi@163.com

  • 中图分类号: TF124,TF823

Preparation and properties of Ti4AlN3 by powder metallurgy

  • 摘要: 采用粉末冶金法制备 Ti4AlN3三元层状金属陶瓷,研究不同的原料粉末、烧结温度和保温时间对其纯度的影响。利用X射线衍射仪(XRD)对烧结试样进行定性分析,并基于Rietveld法完成TOPAS定量分析,扫描电子显微镜(SEM)和能谱仪(EDS)分别表征Ti4AlN3的微观形貌和微区成分。结果表明,以Ti、Al和TiN 粉末为原料可以制备高纯Ti4AlN3块体。当保温时间为2 h、烧结温度1400 ℃时可制备出纯度较高(wTi4AlN3=98.03%)的Ti4AlN3陶瓷;与其他MAX相相比,Ti4AlN3的硬度较低,试验中随着载荷的增大,硬度值趋近于2.8 GPa。
  • 图  1  以2Ti/AlN/2TiN为原料烧结试样的XRD图谱

    Figure  1.  XRD pattern of the sample sintered with 2Ti/AlN/2TiN as raw material

    图  2  以Ti/Al/3TiN为原料烧结试样的XRD图谱

    Figure  2.  XRD pattern of the sample sintered with Ti/Al/3TiN as raw material

    图  3  不同烧结温度下试样XRD图谱

    (a) 1 300 ℃;(b) 1 350 ℃;(c) 1 400 ℃;(d) 1 450 ℃;(e) 1 500 ℃

    Figure  3.  XRD patterns of the samples synthesized at different sintering temperatures

    图  4  不同烧结温度下Ti4AlN3的质量分数

    Figure  4.  Mass fraction of Ti4AlN3 at different sintering temperatures

    图  5  不同保温时间下试样XRD图谱

    (a) 0.5 h;(b) 1.0 h;(c) 2.0 h;(d) 3.0 h;(e) 4.0 h

    Figure  5.  XRD patterns of samples with different holding time

    图  6  不同保温时间下Ti4AlN3的质量分数

    Figure  6.  Mass fraction of Ti4AlN3 at different holding time

    图  7  Ti/1.2Al/2.7TiN在1400 ℃下保温2 h烧结试样的断面SEM图像

    Figure  7.  SEM image of cross section of Ti/1.2Al/2.7TiN sintered at 1400 ℃ for 2 h

    图  8  图7中不同选区的EDS能谱

    Figure  8.  EDS spectra of different selected areas in Fig. 7

    图  9  维氏硬度随载荷变化曲线

    Figure  9.  Curve of Vickers hardness with different indentation load

    图  10  载荷为9.80 N的压痕SEM照片

    Figure  10.  SEM image of the indentation with load of 9.80 N

    表  1  原料粉体的相关信息

    Table  1.   Related information of raw powder

    药品名称平均粒径/μm纯度/%厂家
    Ti4899.8上海麦克林生化科技有限公司
    Al≤7599.0天津市大茂化学试剂厂
    TiN2-1099.0上海麦克林生化科技有限公司
    AlN299.5上海麦克林生化科技有限公司
    下载: 导出CSV

    表  2  烧结参数

    Table  2.   Sintering parameters

    施压强度/MPa升温速率/(℃·min−1)烧结温度/℃保温时间/h冷却方式
    30151300~15000.5~4自然冷却
    下载: 导出CSV

    表  3  图7中各微区EDS能谱分析结果

    Table  3.   EDS analysis results of each micro region in Fig.7

    微区y(Ti)/%y(Al)/%y(N)/%化学式
    谱图11249.4313.8536.72Ti4.04Al1.13N3
    谱图11550.2913.3036.41Ti4.14Al1.10N3
    谱图11649.1313.2337.64Ti3.91Al1.05N3
    谱图11850.7213.1736.10Ti4.15Al1.04N3
    平均值49.8913.3936.72Ti4.08Al1.09N3
    下载: 导出CSV

    表  4  部分MAX相的硬度值[24-26]

    Table  4.   Hardness values of some MAX phases

    MAX相维氏硬度/GPa
    Ti2AlN 4.3
    Nb2AlC 6.1
    Cr2AlC 5.5
    Ta2AlC 4.4
    Ti3AlC2 3.5
    Ti3SiC2 4.0
    Ti3SnC2 9.3
    V4AlC3 6.74±0.12
    β-Ta4Al C3 5.1
    下载: 导出CSV
  • [1] Liu Yunlong, Zhu Degui, Hu Chunfeng. Preparation of Max phase coating by Max phase and spraying method[J]. Modern Technical Ceramics, 2017,38(1):21−28. (刘云龙, 朱德贵, 胡春峰. MAX相及喷涂法制备MAX相涂层[J]. 现代技术陶瓷, 2017,38(1):21−28.
    [2] Guo Qi. Microstructural analysis of Al2O3/Ti2AlN composite materials[J]. Material Sciences, 2018,8(12):1088−1093. doi: 10.12677/MS.2018.812130
    [3] Chen Leilei, Deng Zixuan, Li Mian, et al. Phase diagram thermodynamic study of new Max phase[J]. Journal of Inorganic Materials, 2020,35(1):35−40. (陈雷雷, 邓子旋, 李勉, 等. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020,35(1):35−40.
    [4] Elodie Drouelle, Veronique Brunet, Jonathan Cormier, et al. Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: A comparison[J]. Journal of the American Ceramic Society, 2020,103(2):1270−1280. doi: 10.1111/jace.16780
    [5] Clark D W, Zinkle S J, Patel M K, et al. High temperature ion irradiation effects in MAX phase ceramics[J]. Acta Materialia, 2016,105:130−146. doi: 10.1016/j.actamat.2015.11.055
    [6] Gonzalez‐Julian J, Mauer G, Sebold D, et al. Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges[J]. Journal of the American Ceramic Society, 2020,103(4):2362−2375. doi: 10.1111/jace.16935
    [7] Jin Sen, Su Taichao, Hu Qianku, et al. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020,8(4):158−164. doi: 10.1080/21663831.2020.1724204
    [8] Sobolev K V, Kolincio K K, Emelyanov A, et al. Evolution of magnetic and transport properties in (Cr1−xMnx)2AlCMAX-phase synthesized by arc melting technique[J]. Journal of Magnetism and Magnetic Materials, 2020,493:165642/1−7.
    [9] Xu J, Zhao M Q, Wang Y, et al. Demonstration of Li-ion capacity of MAX phases[J]. ACS Energy Letters, 2016,1(6):1094−1099. doi: 10.1021/acsenergylett.6b00488
    [10] Anasori B, Luhatskaya M R, Gogotsi Y. 2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017,2(2):1−17.
    [11] Hui Xiaobin, Ge Xiaoli, Zhao Ruizheng, et al. Interface chemistry on MXene‐based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials, 2020,30(50):2005190/1−37.
    [12] Guo Z, Zhou J, Zhu L, et al. MXene: a promising photocatalyst for water splitting[J]. Journal of Materials Chemistry A. Materials for Energy and Sustainability, 2016,4(29):11446−11452. doi: 10.1039/C6TA04414J
    [13] Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019,48(1):72−133. doi: 10.1039/C8CS00324F
    [14] Wang Cong, Xu Jiawei, Wang Yunzheng, et al. MXene(Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser[J]. Science China Materials, 2020,64(1):1−7.
    [15] Yan Hanbing, Xu Jianguang, Wu Haijiang, et al. Synthesis of Ti4AlN3 powder by high energy ball milling combined with solid state reaction[J]. Mechanical Engineering Materials, 2014,38(2):36−38, 86. (严汉兵, 许剑光, 吴海江, 等. 高能球磨结合固相反应合成Ti4AlN3粉体[J]. 机械工程材料, 2014,38(2):36−38, 86.
    [16] Zhang Yanli. Study on microwave synthesis of titanium aluminum nitrogen materials[J]. Powder Metallurgy Technology, 2017,35(3):178−181, 201. (张艳丽. 微波合成钛铝氮材料的研究[J]. 粉末冶金技术, 2017,35(3):178−181, 201.
    [17] Wang Lei, Chen Nan. Preparation of Ti2AlN ternary compound ceramics by optimizing powder metallurgy process[J]. Industrial Technology Innovation, 2017,4(3):100−101, 105. (王蕾, 陈楠. 优选粉末冶金工艺制备Ti2AlN三元化合物陶瓷[J]. 工业技术创新, 2017,4(3):100−101, 105.
    [18] Muhammad Faraz Ud Din, Yang Chenhui, Tang Yi, et al. Efficient and cost-effective method to synthesize highly purified Ti4AlN3 and Ti2AlN[J]. Journal of Advanced Dielectrics, 2019,9(1):1950008/1−4.
    [19] Yang Tengfei, Wang Chenxu, Liu Wulong, et al. Comparison of irradiation tolerance of two MAX phases-Ti4AlN3 and Ti2AlN[J]. Journal of Nuclear Materials, 2018,513:120−128.
    [20] Firstov S A, Gorban V F, Pechkovskii I. Mechanical properties of porous Ti3SiC2/TiC, Ti3AlC2/TiC, and Ti4AlN3/TiN nanolaminates at 20 to 1 300 ℃[J]. Powder Metallurgy& Metal Ceramics, 2010,49(7-8):414−423.
    [21] Braverman B S, Lepakova O K, Maksimov Y M. Combustion of TiAl alloy in nitrogen[J]. Combustion Explosion & Shock Waves, 2015,51(4):457−461.
    [22] Barsoum M W, El-Raghy T, Procopio A. Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system[J]. Metallurgical and Materials Transactions A, 2000,31(2):373−378. doi: 10.1007/s11661-000-0273-1
    [23] Green L. Studies on the synthesis and microstructure of Ti2AlN films and protective effect on ferritic steels[D]. Albert-Ludwigs University of Freiburg Doctoral Dissertation. 2020. (Grner L. Untersuchungen zur Synthese und Mikrostruktur von Ti2AlN-Dünnschichten sowie deren Schutzwirkung auf ferritische Sthle[D]. Albert-Ludwigs-Universität FreiburgDoctoral Dissertation. 2020.)
    [24] Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H. An investigation into the microstructure and mechanical properties of V4AlC3 MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019,45(6):7446−7457. doi: 10.1016/j.ceramint.2019.01.036
    [25] Zheng Liya, Zhou Yanchun, Feng Zhihai. Preparation, structure, properties and development trend of max phase ceramics[J]. Aerospace Materials Technology, 2013,43(6):1−23. (郑丽雅, 周延春, 冯志海. MAX相陶瓷的制备、结构、性能及发展趋势[J]. 宇航材料工艺, 2013,43(6):1−23. doi: 10.3969/j.issn.1007-2330.2013.06.001
    [26] Gu Jian, Jiang Xinyan, Guo Wenfei, et al. Research progress of ternary layered ceramics Nb4AlC3[J]. Jiangsu Ceramics, 2016,49(5):6−8, 19. (顾坚, 蒋鑫焱, 郭文飞, 等. 三元层状陶瓷Nb4AlC3的研究进展[J]. 江苏陶瓷, 2016,49(5):6−8, 19. doi: 10.3969/j.issn.1006-7337.2016.05.003
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  122
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回