留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含钛高炉渣碳化过程钛-渣分离研究

简廷芳 赵朗 罗翔宇 扈玫珑

简廷芳, 赵朗, 罗翔宇, 扈玫珑. 含钛高炉渣碳化过程钛-渣分离研究[J]. 钢铁钒钛, 2021, 42(6): 51-58. doi: 10.7513/j.issn.1004-7638.2021.06.006
引用本文: 简廷芳, 赵朗, 罗翔宇, 扈玫珑. 含钛高炉渣碳化过程钛-渣分离研究[J]. 钢铁钒钛, 2021, 42(6): 51-58. doi: 10.7513/j.issn.1004-7638.2021.06.006
Jian Tingfang, Zhao Lang, Luo Xiangyu, Hu Meilong. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 51-58. doi: 10.7513/j.issn.1004-7638.2021.06.006
Citation: Jian Tingfang, Zhao Lang, Luo Xiangyu, Hu Meilong. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 51-58. doi: 10.7513/j.issn.1004-7638.2021.06.006

含钛高炉渣碳化过程钛-渣分离研究

doi: 10.7513/j.issn.1004-7638.2021.06.006
基金项目: 国家重点研发计划项目 (2018 YFC190050404) 资助。
详细信息
    作者简介:

    扈玫珑(1980—),女,甘肃会宁人,教授,博士生导师,通讯作者,主要从事冶金固废有价资源综合利用、高熵合金及钛合金低成本制备及性能提升、加钛护炉等方面研究, E-mail:hml@cqu.edu.cn

  • 中图分类号: TF823, X757

Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag

  • 摘要: 高炉冶炼钒钛矿过程产生了大量含钛高炉渣,攀钢针对渣中钛资源的回收利用成功开发出了高温碳化-低温氯化工艺,但是该工艺存在碳化渣磨矿和氯化尾渣利用等技术性难题,还需要继续探索绿色、经济的处理方法。针对高温碳化过程中Ti(C,N) 弥散分布的问题,提出高温碳化过程加铁富集Ti(C,N)的思路,试验考察了铁/渣(质量比)、生铁添加批次、保温富集时间及预配铁量等因素对富集过程的影响。结果表明,熔渣中Ti(C,N)能聚集在熔铁表面并随其下沉至坩埚底部,水淬后附着有Ti(C,N)的铁块可与残渣实现自然分离,按铁/渣为1.50,在原料中预配15%铁,1600 ℃保温30 min后于30 min内分批向熔渣中加入铁的富集效果较好,可将渣中Ti含量从13.79%降低到4.59%,Ti的回收率达到66.72%。
  • 图  1  不同铁/渣富集试验所得残渣和附有Ti(C,N)的铁块照片实物

    (a)铁/渣为0.70; (b)铁/渣为1.50; (c)铁/渣为2.00

    Figure  1.  Photos of residual slag and lump iron coated by Ti(C,N) obtained by different mass ratios of iron to slag

    图  2  附着有Ti(C,N)的铁块表面XRD谱

    Figure  2.  XRD patterns of lump iron coated by Ti(C,N)

    图  3  不同铁/渣富集试验所得残渣的XRD谱

    (a)铁/渣为0.70;(b)铁/渣为2.00;(c)铁/渣为1.50,上部渣;(d)铁/渣为1.50,下部渣

    Figure  3.  XRD patterns of residual slags obtained by different mass ratios

    图  4  不同批次加铁富集实验所得残渣和附有Ti(C,N)的铁块的实物

    (a) 一次性加铁;(b) 分批加铁

    Figure  4.  Photos of residual slags and lump iron coated by Ti(C,N) obtained by different batches of Fe

    图  5  分不同批次加铁富集试验所得残渣XRD谱

    (a) 疏松多孔的上部渣;(b)质密的下部渣

    Figure  5.  XRD patterns of residual slags obtained by different batches of Fe addition

    图  6  不同时间的保温富集所得残渣XRD衍射谱

    (a) 保温60 min后在60 min内加铁富集所得残渣;(b)保温30 min后在30 min内加铁富集所得下部渣;(c)保温30 min后在30 min内加铁富集所得上部渣

    Figure  6.  XRD pattern of residual slags obtained by different holding time for enrichment

    图  7  预配不同质量的Fe富集试验所得残渣和附有Ti(C,N)的铁饼实物

    Figure  7.  Photo of residual slag and lump iron coated by Ti (C,N) obtained by varying content of pre-added Fe

    (a)15%;(b)30%;(c)75%

    图  8  预配不同质量的Fe富集试验所得上部渣和下部渣的XRD谱

    Figure  8.  XRD patterns of residual slags obtained by different pre-adding content

    (a) 上部渣;(b) 下部渣

    图  9  电解分离前后铁块实物

    (a)电解分离前; (b)电解分离后

    Figure  9.  Photos of the lump iron before and after electrolysis

    图  10  酸浸分离前后铁块实物

    (a)酸浸分离前; (b)酸浸分离后

    Figure  10.  Photos of the lump iron before and after acid leaching

    表  1  含钛高炉渣化学组成

    Table  1.   Chemical compositions of Ti-bearing blast furnace slag %

    TiO2CaOSiO2Al2O3MgO
    2328.826.2148
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Experimental scheme

    序号铁/渣预配铁/%添加批次总保温时间
    /min
    富集开始时间/min
    10.70059030
    21.50059030
    32.00059030
    41.500115060
    51.500515060
    61.5001015060
    71.501559030
    81.503059030
    91.507559030
    下载: 导出CSV
  • [1] Bian Z Z, Feng Y L, Li H R. Extraction of valuable metals from Ti-bearing blast furnace slag using ammonium sulfate pressurized pyrolysis-acid leaching processes[J]. Transactions of Nonferrous Metals Society of China, 2020,30(10):2836−2847. doi: 10.1016/S1003-6326(20)65425-5
    [2] He S Q, Sun H J, Tan D Y, et al. Recovery of titanium compounds from Ti-enriched product of alkali melting Ti-bearing blast furnace slag by dilute sulfuric acid leaching[J]. Procedia Environmental Sciences, 2016,31:977−984. doi: 10.1016/j.proenv.2016.03.003
    [3] Liu X H, Gai G S, Yang Y F, et al. Kinetics of the leaching of TiO2 from Ti-bearing blast furnace slag[J]. Journal of China University of Mining & Technology, 2008,18(2):275−278.
    [4] Sui Z T, Zhang P X, Yamauchi C. Precipitation selectivity of boron compounds from slags[J]. Acta Materialia, 1999,47(4):1337−1344. doi: 10.1016/S1359-6454(98)00422-4
    [5] Zhang L, Zhang L N, Wang M Y, et al. Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition[J]. Minerals Engineering, 2007,20(7):684−693. doi: 10.1016/j.mineng.2007.01.003
    [6] Du Y, Gao J T, Lan X, et al. Recovery of rutile from Ti-bearing blast furnace slag through phase transformation and super-gravity separation for dielectric material[J]. Ceramics International, 2020,46(7):9885−9893. doi: 10.1016/j.ceramint.2019.12.264
    [7] Liang Jingdong. The preliminary and imagine of carbonitride-mineral separation from blast-furnace slags[J]. Iron Steel Vanadium Titanium, 1988,9(2):72−75. (梁经冬. 高炉渣碳氮化-选矿初步研究及设想[J]. 钢铁钒钛, 1988,9(2):72−75.
    [8] Zhang L, Zhang L N, Wang M Y, et al. Precipitation selectivity of perovskite phase from Ti-bearing blast furnace slag under dynamic oxidation conditions[J]. Journal of Non-crystalline Solids, 2007,353(22−23):2214−2220. doi: 10.1016/j.jnoncrysol.2007.02.058
    [9] 简廷芳, 马通祥, 扈玫珑. 高钛型高炉渣碳(氮)化处理研究现状[C]//2020年全国炼铁生产技术会议暨炼铁学术年会文集. 重庆: 中囯金属学会, 2020: 927−932.

    Jian Tingfang, Ma Tongxiang, Hu Meilong. Research status of carbonization (nitrogenation) for titanium-bearing blast furnace slag [C]// Proceedings of the 2020 National Conference on Ironmaking and Iron Production Technology. Chongqing: The Chinese Society for Metals, 2020: 927−932.
    [10] Li Hui, Qiu Yonhquan, Yang Zeqi, et al. Carbonization (nitrogenation) of titanium-bearing blast furnace slag by plasma furnace[J]. Journal of University of Science and Technology Beijing, 1996,(3):231−235. (李慧, 仇永全, 杨则器, 等. 等离子炉碳(氮)化处理高钛高炉渣[J]. 北京科技大学学报, 1996,(3):231−235.
    [11] Feng Chengjian, Zhang Jianshu. Preparation of TiC from Panzhihua blast-furnace slags containing TiO2[J]. Mineral Utilization, 1997,(6):34−41. (冯成建, 张建树. 采用攀钢高炉渣制取碳化钛的试验研究[J]. 矿产综合利用, 1997,(6):34−41.
    [12] 易小祥. 碳氮化处理攀钢含钛高炉渣及其分选研究[D]. 武汉: 武汉科技大学, 2008.

    Yi Xiaoxiang. Separation the titanium carbonitride from modified titanium-bearing blast furnace slag on magnetic separation and flotation [D]. Wuhan: Wuhan University of Science and Technology, 2008.
    [13] Gao Qirui, Song Bo, Guo Zhancheng, et al. Enrichment and separation of TiC phase from carbonized titanium-bearing blast furnace slag by supergravity[J]. Chinese Journal of Rare Metals, 2018,42(4):421−428. (高启瑞, 宋波, 郭占成, 等. 含钛高炉碳化渣中TiC的超重力富集与分离的研究[J]. 稀有金属, 2018,42(4):421−428.
    [14] 甄玉兰. 攀枝花含钛高炉渣资源化利用新途径[D]. 北京: 北京科技大学, 2016.

    Zhen Yulan. New ways of recycling titanium-bearing blast furnace slag in Panzhihua [D]. Beijing: University of Science and Technology Beijing, 2016.
    [15] 许宇宙. 真空碳热还原—酸浸联合工艺制备碳化钛研究[D]. 重庆: 重庆大学, 2015.

    Xu Yuzhou. Preparation of TiC by vacuum carbothermal reduction in vacuum and acid leaching[D]. Chongqing: Chongqing University, 2015.
    [16] 尹方庆. 真空碳热还原含钛物料联合酸浸工艺制取Ti(C, N)基础研究[D]. 重庆: 重庆大学, 2017.

    Yin Fangqing. Basic study on preparation of TiC by the carbothermal reduction in vacuum using containing titanium material [D]. Chongqing: Chongqing University, 2017.
    [17] Hu Meilong, Yin Fangqing, Wei Ruirui, et al. Preparation of TiC using the blast furnace slag bearing titanium by the carbothermal reduction in vacuum and acid leaching[J]. Journal of Iron and Steel Research, 2016,28(5):24−29. (扈玫珑, 尹方庆, 魏瑞瑞, 等. 真空碳热还原-酸浸含钛高炉渣制备TiC[J]. 钢铁研究学报, 2016,28(5):24−29.
    [18] Wu K H, Zhang G H, Gou H P, et al. Preparation and purification of titanium carbide via vacuum carbothermic reduction of ilmenite[J]. Vacuum, 2018,151:51−60. doi: 10.1016/j.vacuum.2018.02.012
    [19] 张荣禄. 含钛高炉渣制取四氯化钛的方法: 中国, CN1033264[P]. 1989-06-07.

    Zhang Ronglu. Process of titanium tetrachloride from blast furnace slag containing titanium: China, CN1033264[P]. 1989-06-07.
    [20] Huang Shouhua, Pan Jingye, Zhang Ronglu. Pilot test of carbonization of the molten blast furnace TiO2 slag at Panzhihua Iron and Steel Company[J]. Iron Steel Vanadium Titanium, 1994,15(2):17−21. (黄守华, 潘竟业, 张荣禄. 攀钢高炉渣熔融还原碳化TiO2半工业试验研究[J]. 钢铁钒钛, 1994,15(2):17−21. doi: 10.7513/j.issn.1004-7638.1994.02.004
    [21] Peng Yi, Ao Jinqing, Xia Qingrong. The causes and countermeasures for non-hydrated activity of residual slags from chlorination process of Pangang BF slags[J]. Multipurpose Utilization of Mineral Resources, 2005,(6):40−46. (彭毅, 敖进清, 夏清荣. 攀钢高炉渣氯化残渣无水化活性原因分析及对策[J]. 矿产综合利用, 2005,(6):40−46. doi: 10.3969/j.issn.1000-6532.2005.06.010
    [22] 刘晓华. 改性含钛高炉渣高温碳化低温氯化的研究[D]. 沈阳: 东北大学, 2009.

    Liu Xiaohua. Study on high-temperature carbonization and low-temperature chlorination on modified titanium bearing blast furnace slag [D]. Shenyang: Northeastern University, 2009.
    [23] Xing S F, Yuan Z F, Xu C, et al. Composition of off-gas produced by combined fluidized bed chlorination for preparation of TiCl4[J]. Transactions of Nonferrous Metals Society of China, 2010,20(1):128−134. doi: 10.1016/S1003-6326(09)60109-6
    [24] Long Panzhong. Experimental researches on removal of chloride in blast furnace slag after extracting titanium[J]. Iron Steel Vanadium Titanium, 2014,35(3):42−45. (龙盘忠. 高炉渣提钛尾渣除氯试验研究[J]. 钢铁钒钛, 2014,35(3):42−45. doi: 10.7513/j.issn.1004-7638.2014.03.010
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  22
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回