留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业纯钛TA2拉伸及低周疲劳性能的各向异性

梁远长 常乐 周昌玉

梁远长, 常乐, 周昌玉. 工业纯钛TA2拉伸及低周疲劳性能的各向异性[J]. 钢铁钒钛, 2022, 43(2): 41-47. doi: 10.7513/j.issn.1004-7638.2022.02.007
引用本文: 梁远长, 常乐, 周昌玉. 工业纯钛TA2拉伸及低周疲劳性能的各向异性[J]. 钢铁钒钛, 2022, 43(2): 41-47. doi: 10.7513/j.issn.1004-7638.2022.02.007
Liang Yuanchang, Chang Le, Zhou Changyu. Anisotropy of tensile and low cycle fatigue properties of commercial pure titanium TA2[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 41-47. doi: 10.7513/j.issn.1004-7638.2022.02.007
Citation: Liang Yuanchang, Chang Le, Zhou Changyu. Anisotropy of tensile and low cycle fatigue properties of commercial pure titanium TA2[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 41-47. doi: 10.7513/j.issn.1004-7638.2022.02.007

工业纯钛TA2拉伸及低周疲劳性能的各向异性

doi: 10.7513/j.issn.1004-7638.2022.02.007
基金项目: 国家自然科学基金资助(编号:51905260,51975271)。
详细信息
    作者简介:

    梁远长(1999—),男,四川达州人,硕士,主要从事钛金属力学行为研究,E-mail: 860332179@qq.com

    通讯作者:

    常乐(1991—),男,副研究员,主要从事化工设备的结构强度研究,E-mail: chellechang@163.com

  • 中图分类号: TF823,TG146.2

Anisotropy of tensile and low cycle fatigue properties of commercial pure titanium TA2

  • 摘要: 为系统研究工业纯钛TA2拉伸性能及低周疲劳性能的各向异性,沿轧制方向(RD)、与RD呈30°方向(RD-30°)、与RD呈60°方向(RD-60°)及垂直轧制方向(TD)开展了室温拉伸及低周疲劳试验。结果表明:随着取样角度增加,屈服强度增加,屈强比上升,材料的塑性下降。基于Hollomon模型及Johnson-Cook模型对工业纯钛真实应力应变曲线进行预测,发现Hollomon模型预测精度更高。低周疲劳试验结果表明:不同取样方向的试样均呈现循环软化特征,随着取样角度增加,恒定应变幅下循环应力幅值增加,总的应变能密度增加,导致疲劳寿命呈下降趋势。不同取向试样的低周疲劳寿命满足Manson-coffin经验关系式。
  • 图  1  拉伸试样尺寸

    Figure  1.  Tensile sample size

    图  2  疲劳试样尺寸

    Figure  2.  Fatigue sample size

    图  3  试样排布情况

    Figure  3.  Sample arrangement

    图  4  母材金相

    Figure  4.  Metallography of base metal

    图  5  TA2拉伸力学性能随加载方向和应变速率变化

    (a)屈服强度;(b)抗拉强度;(c)断后延伸率;(d)屈强比

    Figure  5.  Variations of tensile mechanical properties of TA2 with loading direction and strain rate

    图  6  Hollomon本构模型和JC本构模型预测情况

    Figure  6.  Prediction results of Hollomon and JC constitutive model

    (a) RD;(b) RD-30°;(c) RD-60°;(d) TD

    图  7  循环应力幅与(a)应变幅值及(b)加载方向的相关性

    Figure  7.  Dependence of cyclic stress amplitude with (a) strain amplitude and (b) loading direction

    图  8  疲劳寿命随加载方向的变化情况

    Figure  8.  Variation of fatigue life with loading direction

    图  9  总应变能密度随加载方向和幅值变化情况

    Figure  9.  Variation of total strain energy density with loading direction and amplitude

    图  10  基于总应变能密度的疲劳寿命预测与试验结果对比

    Figure  10.  Comparison between fatigue life prediction by total strain energy density and experimental results

    图  11  Manson-coffin模型预测寿命与试验结果对比

    Figure  11.  Comparison between predicted life by Manson-coffin model and experimental results

    表  1  TA2的化学成分

    Table  1.   Chemical compositions of TA2 %

    TiFeCNHO其它元素
    单个总和
    > 990.020.010.010.0020.14< 0.1< 0.4
    下载: 导出CSV

    表  2  不同疲劳模型参数拟合值

    Table  2.   Fitting values of different fatigue model parameters

    加载方向Manson-coffin模型基于总能量密度模型
    $\sigma _{{f}}^{'}$ $\varepsilon _f^{'}$ b c k c
    RD 852.23 5.57 −0.1072 −0.3104 1.99 −0.524
    30o 804.06 6.35 −0.0966 −0.3378 2.84 −0.568
    60o 862.81 7.46 −0.1008 −0.3908 2.99 −0.590
    TD 925.24 8.21 −0.1028 −0.4191 4.3 −0.651
    下载: 导出CSV
  • [1] Chang Hui, Zhou Lian, Wang Xiangdong. Development and future of Chinese titanium industry and technology[J]. Journal of Aeronautical Materials, 2014,34(4):39. (常辉, 周廉, 王向东. 我国钛工业技术进展及展望[J]. 航空材料学报, 2014,34(4):39.
    [2] Jia Hong, Lu Fusheng, Hao Bin. Report on China titanium industry in 2020[J]. Iron Steel Vanadium Titanium, 2021,42(3):1−9. (贾翃, 逯福生, 郝斌. 2020年中国钛工业发展报告[J]. 钢铁钒钛, 2021,42(3):1−9. doi: 10.7513/j.issn.1004-7638.2021.03.001
    [3] Peng L, Hao Y, Zhang B, et al. Tension-compression asymmetry in yielding and strain hardening behavior of CP-Ti at room temperature[J]. Materials Science and Engineering:A, 2017,707:172−180. doi: 10.1016/j.msea.2017.09.042
    [4] Roth A, Lebyodkin M A, Lebedkina T A, et al. Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions[J]. Materials Science & Engineering A, 2014,596:236−243.
    [5] Takao K, Kusukawa K. Low-cycle fatigue behavior of commercially pure titanium[J]. Materials Science & Engineering A, 1996,213(1-2):81−85.
    [6] Ishihara S, Taneguchi S, Shibata H, et al. Anisotropy of the fatigue behavior of extruded and rolled magnesium alloys[J]. International Journal of Fatigue, 2013,50:94−100. doi: 10.1016/j.ijfatigue.2012.02.011
    [7] Mao P, Liu Z, Wang C. Texture effect on high strain rates tension and compression deformation behavior of extruded AM30 alloy[J]. Materials Science & Engineering A, 2012,539:13−21.
    [8] 刘定凯. 工业纯钛板材的成形性能及各向异性研究[D]. 重庆: 重庆大学, 2016.

    Liu Dingkai. The study of formability and anisotropy in commercially pure titanium sheet[D]. Chongqing: Chongqing University, 2016.
    [9] Tian Chenchao, Jiao Lei, Zhang Juan, et al. Anisotropy of plastic deformation of pure titanium sheet during tensile test at room temperature[J]. Welded Pipe and Tupe, 2018,41(10):18−21. (田晨超, 焦磊, 张娟, 等. 纯钛板材室温拉伸塑性变形的各向异性[J]. 焊管, 2018,41(10):18−21.
    [10] Chang L, Ma T H, Zhou B B, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions[J]. International Journal of Fatigue, 2019,129:105220. doi: 10.1016/j.ijfatigue.2019.105220
    [11] Chang L, Zhou B B, Ma T H, et al. The difference in low cycle fatigue behavior of CP-Ti under fully reversed strain and stress-controlled modes along rolling direction[J]. Materials Science & Engineering A, 2019,742:211−223.
    [12] Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J]. Acta Materialia, 2000,48(6):1225−1238. doi: 10.1016/S1359-6454(99)00426-7
    [13] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985,21(1):31−48. doi: 10.1016/0013-7944(85)90052-9
    [14] Becker H, Pantleon W. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium[J]. Computational Materials Science, 2013,76:52−59. doi: 10.1016/j.commatsci.2013.03.028
    [15] Lv F, Yang F, Duan Q Q, et al. Tensile and low-cycle fatigue properties of Mg–2.8% Al–1.1% Zn–0.4% Mn alloy along the transverse and rolling directions[J]. Scripta Materialia, 2009,61(9):887−890. doi: 10.1016/j.scriptamat.2009.07.023
    [16] Lin Y C, Chen X M, Liu Z H, et al. Investigation of uniaxial low-cycle fatigue failure behavior of hot-rolled AZ91 magnesium alloy[J]. International Journal of Fatigue, 2012,48:122−132.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  1
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回