留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TA18钛合金热变形行为及热加工图研究

彭力 江健 罗小峰 申学良 王莹 邢远

彭力, 江健, 罗小峰, 申学良, 王莹, 邢远. TA18钛合金热变形行为及热加工图研究[J]. 钢铁钒钛, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
引用本文: 彭力, 江健, 罗小峰, 申学良, 王莹, 邢远. TA18钛合金热变形行为及热加工图研究[J]. 钢铁钒钛, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
Peng Li, Jiang Jian, Luo Xiaofeng, Shen Xueliang, Wang Ying, Xing Yuan. Hot deformation behavior and processing maps of TA18 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007
Citation: Peng Li, Jiang Jian, Luo Xiaofeng, Shen Xueliang, Wang Ying, Xing Yuan. Hot deformation behavior and processing maps of TA18 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(6): 45-50. doi: 10.7513/j.issn.1004-7638.2022.06.007

TA18钛合金热变形行为及热加工图研究

doi: 10.7513/j.issn.1004-7638.2022.06.007
详细信息
    作者简介:

    彭力,1990年出生,男,四川大英人,工程师,研究方向:钛合金加工,E-mail:listen0812@163.com

  • 中图分类号: TF823

Hot deformation behavior and processing maps of TA18 titanium alloy

  • 摘要: 采用Gleeble 3500热模拟试验机研究了TA18钛合金在750~1050 ℃和0.001~10 s−1条件下的热变形行为,建立了Zener-Hollomon参数(Z参数)的本构方程及热加工图。结果表明,TA18钛合金β单相区的变形激活能为310.71 kJ/mol,α+β双相区的应变激活能为578.78 kJ/mol。经过拟合得到了TA18钛合金在单相区和双相区变形的流变应力本构方程。通过对热加工图的分析,确定了TA18钛合金合理的热加工参数范围为:变形温度825~900 ℃,应变速率0.01~0.05 s−1。试验结果可为TA18钛合金热加工工艺参数的选择提供理论依据。
  • 图  1  TA18钛合金初始金相组织

    Figure  1.  Original microstructure of TA18 alloy

    图  2  不同应变速率条件下变形的真应力-真应变曲线

    Figure  2.  True stress-true strain curves of TA18 alloy at different strain rates

    图  3  应变速率与峰值应力的形变关系

    Figure  3.  Relationship between strain rates and peak stress

    图  4  应力和温度的变化关系

    Figure  4.  Relationship between stress and temperature

    图  5  lnZ与应力的关系

    Figure  5.  Relationship between lnZ and stress

    图  6  TA18钛合金不同应变下的热加工图

    Figure  6.  Processing maps of TA18 alloy at different strains

  • [1] Nicolás Bayona-Carrillo, Nathalie Bozzolo, Jean-Jacques Fundenberger, et al. Effect of recrystallization on tensile behavior, texture, and anisotropy of Ti-3Al-2.5V cold pilgered tubes[J]. Advanced Engineering Materials, 2011,13(5):383−387. doi: 10.1002/adem.201000328
    [2] Murty K Linga, Kishore R, Yan J, et al. Effect of annealing temperature on texture and creep anisotropy in Ti3Al2.5V alloy[J]. Materials Science Forum, 2005,495-497:1645−1650.
    [3] Nan Li, Yang Yashe, Qi Yuanhao, et al. Rolling process of high-strength TA18 titanium alloy tubes for aviation[J]. Rare Metal Materials and Engineering, 2013,42(1):166−170. (南莉, 杨亚社, 齐元昊, 等. 航空用高强TA18钛合金管材的轧制工艺[J]. 稀有金属材料与工程, 2013,42(1):166−170. doi: 10.3969/j.issn.1002-185X.2013.01.034
    [4] Wang Yun, Yun Haiying, Li Wei, et al. Comparative study on microstructure and properties of TA18 titanium alloy bars prepared by two processes[J]. Hot Working Technology, 2019,48(15):104−106. (王云, 韵海鹰, 李维, 等. 两种工艺制备的TA18钛合金棒材组织性能的比较研究[J]. 热加工工艺, 2019,48(15):104−106. doi: 10.14158/j.cnki.1001-3814.2019.15.025
    [5] Li Wei, Wang Xing, Kang Cong, et al. Effect of process parameters on properties of TA18 titanium alloy bars[J]. Mechanical Engineering & Automation, 2019,(5):150−151. (李维, 王兴, 康聪, 等. 工艺参数对TA18钛合金棒材性能的影响[J]. 机械工程与自动化, 2019,(5):150−151. doi: 10.3969/j.issn.1672-6413.2019.05.059
    [6] Wu Yaojin, Liu Haijun, Xu Jian, et al. Constitutive equations and processing map for hot deformation of a Ti-6Al-4V alloy prepared with spark-plasma sintering[J]. Materials and Technology, 2020,(54):25−32.
    [7] Ji Hongchao, Peng Zhanshuo, Pei Weichi, et al. Constitutive equation and hot processing map of TA15 titanium alloy[J]. Materials Science, 2020,(7):4.
    [8] Zener C, Hollom J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944,15(1):22−32. doi: 10.1063/1.1707363
    [9] Shi H, Malaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Engineering, 1997,13(3):210−216.
    [10] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966,14(9):1136−1139. doi: 10.1016/0001-6160(66)90207-0
    [11] Jonas J J, Sellars C M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969,130(14):1−24.
    [12] Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1998,43(6):243. doi: 10.1179/imr.1998.43.6.243
    [13] Liu Jia, Wang Xiahui, Liu Jituo, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy[J]. Journal of Alloys and Compounds, 2019,782:224−234. doi: 10.1016/j.jallcom.2018.12.212
    [14] Xu C, Pan J P, Nakata T, et al. Hot compression deformation behavior of Mg-9Gd-2.9Y-1.9Zn-0.4Zr-0.2Ca alloy[J]. Materials Characterization, 2017,124:40−49. doi: 10.1016/j.matchar.2016.11.036
  • 加载中
图(6)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  88
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回