Volume 43 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
Citation: Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001

Synthesis of porous bentonite modified titanium-lithium ion sieve precursor

doi: 10.7513/j.issn.1004-7638.2022.03.001
  • Received Date: 2022-05-05
  • Publish Date: 2022-06-30
  • The lithium titanate precursor sol was prepared by inorganic precipitation-peptization method with titanium sulfate as titanium source, lithium acetate as lithium source, followed by adding bentonite as modifier. Bentonite modified Li2TiO3 powder was obtained after stirring, aging, drying and calcination. The effects of molar ratio (R) of complexing agent H2O2 to Ti, calcination temperature, solid-liquid ratio of bentonite to sol on the surface morphology and crystal structure of precursor Li2TiO3 were studied. The samples were characterized by scanning electron microscopy, X-ray diffraction, thermogravimetry-differential scanning calorimetry and infrared spectroscopy. The results show that the crystal structure of unmodified Li2TiO3 is the most complete when calcined at 750 ℃ with R = 6. After the sample was modified by bentonite with a solid-liquid ratio of 1.67 g/L, the crystallinity of each crystal surface was the most complete when the calcination temperature was 750 ℃, and Li2TiO3 with uniform porous structure on the surface was obtained.
  • loading
  • [1]
    Martin G, Rentsch L, Hoeck M, et al. Lithium market research–global supply, future demand and price development[J]. Energy Storage Materials, 2017,6:171−179. doi: 10.1016/j.ensm.2016.11.004
    [2]
    Swain B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017,172:388−403. doi: 10.1016/j.seppur.2016.08.031
    [3]
    Zhang Y, Hu Y H, Sun N, et al. A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine[J]. Hydrometallurgy, 2019,187:125−133. doi: 10.1016/j.hydromet.2019.05.019
    [4]
    Zhao X Y, Yang H C, Wang Y F, et al. Review on the electrochemical extraction of lithium from seawater/brine[J]. Journal of Electroanalytical Chemistry, 2019,850:113389. doi: 10.1016/j.jelechem.2019.113389
    [5]
    Guo Z Y, Ji Z Y, Chen Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production 2018, 193: 338-350.
    [6]
    Chen S Q, Chen Z S, Wei Z W, et al. Titanium-based ionsieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J]. Chemical Engineering Journal, 2021,410:128320. doi: 10.1016/j.cej.2020.128320
    [7]
    Dou M, Fyta M. Lithium adsorption on 2D transition metal dichalcogenides: Towards a descriptor for machine learned materials design[J]. Journal of Materials Chemistry A, 2020,8:23511−23518. doi: 10.1039/D0TA04834H
    [8]
    Roobavannan S, Vigneswaran S, Naidu G. Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of waterand lithium from seawater[J]. Chemical Engineering Journal, 2020,396:125386. doi: 10.1016/j.cej.2020.125386
    [9]
    Li X W, Chen L L, Chao Y H, et al. Amorphous TiO2‐derived large‐capacity lithium ion sieve for lithium recovery[J]. Chemical Engineering & Technology, 2020,43(9):1784−1791.
    [10]
    Qiu Z W, Wang M Y, Chen Y, et al. Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater[J]. Desalination, 2021,506:115003. doi: 10.1016/j.desal.2021.115003
    [11]
    Zhang Q H, Li S P, Sun S Y, et al. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve[J]. Advanced Powder Technology, 2009,20(5):432−437. doi: 10.1016/j.apt.2009.02.008
    [12]
    Wang Q, Du X, Gao F F, et al. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration[J]. Separation and Purification Technology, 2019,226:59−67. doi: 10.1016/j.seppur.2019.05.082
    [13]
    Liu D F, Sun S Y, Yu J G. Li4Mn5O12 desorption process with acetic acid and Mn dissolution mechanism[J]. Journal of Chemical Engineering of Japan, 2019,52(3):274−279.
    [14]
    Wei K, Zhou L H, Wang S, et al. Watermelon-like texture lithium titanate and silicon composite films as anodes for lithium-ion battery with high capacity and long cycle life[J]. Journal of Alloys and Compounds, 2021,885:160994. doi: 10.1016/j.jallcom.2021.160994
    [15]
    Tamura N, Yoshinuma M, Yin X, et al. A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas[J]. The Review of Scientific Instruments, 2021,92(6):063516. doi: 10.1063/5.0043495
    [16]
    Zhang J, Zhou C, Naenen V, et al. Facile synthesis of dual-phase lithium titanate nanowires as anode materials for lithium-ion battery[J]. Journal of Alloys and Compounds, 2021,875:160038. doi: 10.1016/j.jallcom.2021.160038
    [17]
    Yuan J S, Yin H B, Ji Z Y, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J]. Industrial & Engineering Chemistry Research, 2014,53(23):9889−9896.
    [18]
    Zhao Q, Gao J M, Guo Y, et al. Facile synthesis of magneticallyrecyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018,47(10):1308−1310. doi: 10.1246/cl.180593
    [19]
    Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021,42(2):66−72. (孟祥坤, 贺帅, 刘银凤, 等. 固相法合成掺杂型锂钛系离子筛及其吸附性能[J]. 青岛科技大学学报(自然科学版), 2021,42(2):66−72.

    Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021, 42(2): 66-72.
    [20]
    Onodera Y, Iwasaki T, Hayashi H, et al. A new inorganic titanium compound with high selective adsorbability for Li+[J]. Journal of the Ceramic Society of Japan, 1989,97:888−894.
    [21]
    Zhang L, Zhou D, Yao Q, et al. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance[J]. Applied Surface Science, 2016,368:82−87. doi: 10.1016/j.apsusc.2016.01.203
    [22]
    Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021,11(30):84−88. (刘鲤君. 锂离子筛前驱体制备方法研究进展[J]. 科技创新与应用, 2021,11(30):84−88.

    Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021, 11(30): 84-88.
    [23]
    Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3 lithium ions sievee[J]. Journal of Shaanxi University of Science & Technology, 2021,39(1):140−152. (于成龙, 宋杰, 宁青菊, 等. H2TiO3新型锂离子筛研究进展[J]. 陕西科技大学学报, 2021,39(1):140−152.

    Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3lithium ions sieve[J]. Journal of Shanxi University of Science & Technology, 2021, 39(1): 140-152.
    [24]
    Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020,49(18):81−83. (朱良师. 模板法制备纳米氧化铜的研究进展[J]. 山东化工, 2020,49(18):81−83. doi: 10.3969/j.issn.1008-021X.2020.18.032

    Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020, 49(18): 81-83. doi: 10.3969/j.issn.1008-021X.2020.18.032
    [25]
    Gu D L, Sun W J, Han G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for west Taijinar salt lake brine[J]. Chemical Engineering Journal, 2018,350:474−483. doi: 10.1016/j.cej.2018.05.191
    [26]
    Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched beta-Li2TiO3 with an ion-sieve application: Excellent lithium adsorption[J]. RSC Advances, 2016,6(104):102608−102616. doi: 10.1039/C6RA18018C
    [27]
    Xu X, Zhou Y, Fan M H, et al. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor[J]. RSC Advances, 2017,7(31):18883−18891. doi: 10.1039/C7RA01056G
    [28]
    Zhang LY, Liu W. A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation-peptization methord[J]. RSC Advances, 2018,8:1385−1391. doi: 10.1039/C7RA11430C
    [29]
    Modabberi S, Namayandeh A, Setti M, et al. Genesis of the eastern iranian bentonite deposits[J]. Applied Clay Science, 2019,168:56−67. doi: 10.1016/j.clay.2018.10.011
    [30]
    Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials[J]. Materials Reports, 2021,35(5):5040−5052.
    [31]
    Wang K X, Ma H, Pu S Y, et al. Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water[J]. Journal of Hazardous Materials, 2019,362:160. doi: 10.1016/j.jhazmat.2018.08.067
    [32]
    Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021,40(2):107−113. (洪雷, 丁倩云, 孙建强, 等. 磁化有机改性膨润土吸附水中全氟化合物的实验[J]. 兰州交通大学学报, 2021,40(2):107−113. doi: 10.3969/j.issn.1001-4373.2021.02.016

    Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 107-113. doi: 10.3969/j.issn.1001-4373.2021.02.016
    [33]
    Yu C L, Yanagisawa K, Kamiya S, et al. Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure[J]. Ceramics International, 2014,40(1):1901−1908. doi: 10.1016/j.ceramint.2013.07.097
    [34]
    Zhang L Y, Shui Y, Zhao L L, et al. Preparation of Ni-doped Li2TiO3 using an inorganic precipitation–peptization method[J]. Coatings, 2019,9(11):701−717. doi: 10.3390/coatings9110701
    [35]
    Sternik D, Galaburda M, Bogatyrov V M, et al. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite[J]. Colloids and Interfaces, 2019,3(1):18. doi: 10.3390/colloids3010018
    [36]
    Dai H J, Huang Y, Huang H H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogelsreinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J]. Carbohydrate Polymers, 2018,185:1−11. doi: 10.1016/j.carbpol.2017.12.073
    [37]
    Żymankowska-Kumona S, Holtzera M, Grabowski G. Thermal analysis of foundry bentonites[J]. Archives of Foundry Engineering, 2011,11:209−213.
    [38]
    Islam M M, Bredow T. Lithium diffusion pathways in β-Li2TiO3: A theoretical study[J]. Journal of Physical Chemistry C, 2016,120(13):7061−7066. doi: 10.1021/acs.jpcc.6b02613
    [39]
    Snyder M Q, Desisto W J, Tripp C P. An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12)[J]. Applied Surface Science, 2007,253(24):9336−9341. doi: 10.1016/j.apsusc.2007.05.065
    [40]
    Marthi R, Asgar H, Gadikota G, et al. On the structure and lithium adsorption mechanism of layered H2TiO3[J]. ACS Applied Materials & Interfaces, 2021,13(7):8361−8369.
    [41]
    Laumann A, Fehr K T, Wachsmann M, et al. Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—Its stability and structural properties[J]. Solid State Ionics, 2010,181(33-34):1525−1529. doi: 10.1016/j.ssi.2010.08.017
    [42]
    Huang Z H, Li Y Z, Chen W J, et al. Modified bentonite adsorption of organic pollutants of dyewastewater[J]. Materials Chemistry and Physics, 2017,202:266−276. doi: 10.1016/j.matchemphys.2017.09.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (112) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return