Volume 43 Issue 5
Nov.  2022
Turn off MathJax
Article Contents
Yu Qingchun, Liu Zhiping, Yin Shubiao, Zhang Songlai. Simulation study on the eccentric stirring of hot metal desulfurization[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019
Citation: Yu Qingchun, Liu Zhiping, Yin Shubiao, Zhang Songlai. Simulation study on the eccentric stirring of hot metal desulfurization[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(5): 129-135. doi: 10.7513/j.issn.1004-7638.2022.05.019

Simulation study on the eccentric stirring of hot metal desulfurization

doi: 10.7513/j.issn.1004-7638.2022.05.019
  • Received Date: 2022-05-04
  • Publish Date: 2022-11-01
  • Based on the actual size of molten iron tank, a physical model was proportionally established to simulate the eccentric stirring desulfurization using KR method. Numerical simulation was made to simulate the desulfurization process of hot metal with eccentric stirring by VOF multiphase flow model, standard k-ɛ turbulence model and Multiple Reference Frame method (MRF) using CFD software. It is found that the vortex shape is irregular during the eccentric stirring process, and the maximum vortex depth is located in the center of the mixer. Fluid moves strongly near the agitator wall, and flows along the upper and lower directions. Fluid in the far side moves slowly, and the average fluid velocity in the end side of blade is about twice that in the far side. Eccentric stirring can change the motion state of fluid at the bottom of the mixer and reduce the "dead zone". When the stirring speed increases from 120 r/min to 200 r/min, the average fluid speed increases by about 68%, and the volume proportion of high-speed fluid decreases slightly, from 60.4% to 57.9%. Eccentric stirring is easy to be realized in industry, and the increase of speed is beneficial to the diffusion of desulfurizer, however, the economy and safety should be considered for optimum speed.
  • loading
  • [1]
    Gong Hongjun, Liang Xinteng, Zhou Zunchuan, et al. Application of rotary injection desulfurization technology in hot metal pretreatment[J]. Iron Steel Vanadium Titaniumm, 2020,41(1):173−178. (龚洪君, 梁新腾, 周遵传, 等. 旋转喷吹脱硫技术在铁水预处理上的应用研究[J]. 钢铁钒钛, 2020,41(1):173−178. doi: 10.7513/j.issn.1004-7638.2020.01.030
    [2]
    Zhang Maolin, Xu Anjun. Comparison of application of KR method with that of injection method in hot metal desulphurization[J]. Steelmaking, 2009,25(5):73−77. (张茂林, 徐安军. KR法与喷吹法在铁水脱硫中应用的比较[J]. 炼钢, 2009,25(5):73−77.
    [3]
    Yao Na, Xing Chao, Li Xiangsheng. Effect of hot metal desulfurization factors in KR method[J]. Journal of Materials and Metallurgy, 2010,9(3):164−167. (姚娜, 兴超, 李祥胜. KR法铁水脱硫效果的影响因素分析[J]. 材料与冶金学报, 2010,9(3):164−167. doi: 10.3969/j.issn.1671-6620.2010.03.002
    [4]
    Dong Jiapeng, Zhang Lifeng, Zhao Yanyu, et al. Mixing phenomena of hot metal in KR desulfurization process using water modeling[J]. Journal of Iron and Steel Research, 2021,33(2):103−109. (董佳鹏, 张立峰, 赵艳宇, 等. KR法铁水脱硫过程铁水混合现象的水模型[J]. 钢铁研究学报, 2021,33(2):103−109.
    [5]
    Yan Fengyi, Song Mantang, Zhang Guiyu, et al. Optimization of desulphurization with based reagent.[J]. Iron and Steel, 2003,38(2):13−15. (阎凤义, 宋满堂, 张贵玉, 等. 镁基粉剂脱硫工艺优化与实践[J]. 钢铁, 2003,38(2):13−15. doi: 10.3321/j.issn:0449-749X.2003.02.004
    [6]
    He M L, Wang N, Chen M, et al. Distribution and motion behavior of desulfurizer particles in hot metal with mechanical stirring[J]. Powder Technology, 2020,361(1):455−461.
    [7]
    Ji J H, Liang R Q, He J C. Simulation on mixing behavior of desulfurizer and high-sulfur hot metal based on variable-velocity stirring[J]. ISIJ International, 2016,56(5):794−802. doi: 10.2355/isijinternational.ISIJINT-2015-549
    [8]
    闵昌飞. KR法铁水脱硫的流体流动特性研究[D]. 武汉: 武汉科技大学, 2021.

    Min Changfei. Study on fluid flow characteristics of KR hot metal desulfurization[D]. Wuhan: Wuhan University of Science and Technology, 2021.
    [9]
    田广亚, 徐强, 闵通宏, 等. KR法铁水脱硫水模型试验研究 [C]. 第四届冶金工程科学论坛论文集. 2005: 102-106.

    Tian Guangya, Xu Qiang, Min Tonghong, et al. Research on water modeling in KR desulfurization of hot metal [C]//Proceedings of the 4th Metallurgical Engineering Science Forum. 2005: 102-106.
    [10]
    Li Meiting, Li Wei, Li Xiaoguang, et al. Laminar flow field characteristics in the stirred vessel equipped with an eccentric-shaft impeller[J]. Journal of Shandong University (Engineering Science), 2019,49(4):93−98,107. (李美婷, 李威, 李晓光, 等. 偏心轴搅拌槽内的层流流场特性[J]. 山东大学学报(工学版), 2019,49(4):93−98,107.
    [11]
    Bi Huafei, Zhou Kun, Huang Xiongbin. Flow, suspension and mixing characteristics of eccentric stirring[J]. The Chinese Journal of Process Engineering, 2017,17(1):52−57. (毕华飞, 周坤, 黄雄斌. 偏心搅拌的流动、悬浮和混合特性[J]. 过程工程学报, 2017,17(1):52−57. doi: 10.12034/j.issn.1009-606X.216244
    [12]
    Liu Y, Zhang T A, Sano M, et al. Mechanical stirring for highly efficient gas injection refining[J]. Transaction Nonferrous Metals Society of China, 2011,21:1896−1904. doi: 10.1016/S1003-6326(11)60947-3
    [13]
    Liu Yan, Zhang Ting, an, Du Jingyao, et al. Numerical simulation of gas bubble disintegration and dispersion process in liquid[J]. The Chinese Journal of Process Engineering, 2009,9(S1):400−404. (刘燕, 张廷安, 杜靖尧, 等. 流体中气泡微细化与分散过程的数值模拟[J]. 过程工程学报, 2009,9(S1):400−404. doi: 10.3321/j.issn:1009-606X.2009.z1.088
    [14]
    Yang Fengling, Zhou Shenjie, Zhang Cuixun, et al. Study on the solid-liquid suspension in eccentrically stirred tanks[J]. J. Huazhong University of Science & Technology (Natural Science Edition), 2012,40(11):22−26. (杨锋苓, 周慎杰, 张翠勋, 等. 偏心搅拌槽内固-液悬浮特性研究[J]. 华中科技大学学报(自然科学版), 2012,40(11):22−26.
    [15]
    Zeng Tong. Water modeling experiment of KR mechanical stirring desulfurization tank[J]. Metallurgical Information Review, 2007,(3):27−29. (曾彤. 铁水罐KR机械搅拌式脱硫水模试验研究及应用[J]. 冶金信息导刊, 2007,(3):27−29. doi: 10.3969/j.issn.1008-3618.2007.03.008
    [16]
    Wang Weilong, Liu Xing, Sun Tongyun. Research of laminar stirred tank[J]. Petrochemical Industry Technology, 2017,24(12):91−94. (王伟龙, 刘欣, 孙桐运. 层流搅拌槽研究方法及研究现状[J]. 石化技术, 2017,24(12):91−94. doi: 10.3969/j.issn.1006-0235.2017.12.069
    [17]
    Chen S Y, Zhang T, Lv L, et al. Intensification of the liquid side mass transfer in double-side falling film microchannels by micro-mixing structures[J]. Chemical Engineering Science, 2019,193:264−275. doi: 10.1016/j.ces.2018.09.016
    [18]
    韩占忠. Fluent: 流体工程仿真计算实例与分析[M]. 北京: 北京理工大学出版社, 2009.

    Han Zhanzhong. Example and analysis of fluid engineering simulation[M]. Beijing: Beijing University of Technology Press, 2009.
    [19]
    Syrjanen J K, Manninen M T. Detailed CFD prediction of flow around a 45° pitched blad turbine[C]// Proceedings of 10th European Conference on Mixing. Delft. 2000: 265-272.
    [20]
    Zhu Huateng, Chen Guanghui, Wang Weiwen. Numerical simulation and analysis of secondary vortex in different cyclone separators[J]. Journal of Chemical Engineering of Chinese Universities, 2017,31(5):1062−1071. (祝华腾, 陈光辉, 王伟文, 等. 不同结构的旋风分离器二次涡的数值模拟和分析[J]. 高校化学工程学报, 2017,31(5):1062−1071. doi: 10.3969/j.issn.1003-9015.2017.05.007
    [21]
    Ma Qingshan, Feng Lianfang, Gu Xueping, et al. Power consumption for powder in horizonal agitated reactor[J]. Journal of Chemical Engineering of Chinese Universities, 1999,13(1):31−37. (马青山, 冯连芳, 顾雪萍, 等. 卧式单轴粉体搅拌反应器的搅拌功率[J]. 高校化学工程学报, 1999,13(1):31−37. doi: 10.3321/j.issn:1003-9015.1999.01.006
    [22]
    Chen Xinde, Sun Jianglong, Zhou Jiajian, et al. Numerical simulation analysis of the flow during hot metal desulfurization by KR method[J]. Journal of Wuhan University of Science and Technology, 2015,38(5):330−335. (程新德, 孙江龙, 周家健, 等. KR法铁水脱硫的流动数值模拟分析[J]. 武汉科技大学学报, 2015,38(5):330−335.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (93) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return