留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沉钒母液中铬的综合回收研究进展

宋悦 吴桂选 应子文 魏琦峰 任秀莲

宋悦, 吴桂选, 应子文, 魏琦峰, 任秀莲. 沉钒母液中铬的综合回收研究进展[J]. 钢铁钒钛, 2021, 42(5): 34-41. doi: 10.7513/j.issn.1004-7638.20.21.05.006
引用本文: 宋悦, 吴桂选, 应子文, 魏琦峰, 任秀莲. 沉钒母液中铬的综合回收研究进展[J]. 钢铁钒钛, 2021, 42(5): 34-41. doi: 10.7513/j.issn.1004-7638.20.21.05.006
Song Yue, Wu Guixuan, Ying Ziwen, Wei Qifeng, Ren Xiulian. Research progress on comprehensive recovery of chromium in vanadium bearing mother liquor[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 34-41. doi: 10.7513/j.issn.1004-7638.20.21.05.006
Citation: Song Yue, Wu Guixuan, Ying Ziwen, Wei Qifeng, Ren Xiulian. Research progress on comprehensive recovery of chromium in vanadium bearing mother liquor[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 34-41. doi: 10.7513/j.issn.1004-7638.20.21.05.006

沉钒母液中铬的综合回收研究进展

doi: 10.7513/j.issn.1004-7638.20.21.05.006
基金项目: 山东省重点研发计划(2017CXGC1002)
详细信息
    作者简介:

    宋悦(1997—),女,黑龙江哈尔滨人,硕士研究生,主要研究方向为分离科学与技术及资源综合利用,E-mail:563879007@qq.com;

    通讯作者:

    任秀莲,教授,博士生导师,研究方向为分离科学与技术及资源综合利用。E-mail: renxiulian@126.com

  • 中图分类号: TF841.3,X75

Research progress on comprehensive recovery of chromium in vanadium bearing mother liquor

  • 摘要: 介绍了沉钒母液中铬的回收,包括化学沉淀法、离子交换法、吸附法、电解法和溶剂萃取法在内的五种常见的回收方法,阐述了各自的工艺路线和基本原理,分析总结了它们的优缺点。根据沉钒母液的特点,指出企业应该在不同的需求下,合理地选择相应的回收方法。经过综合比较,认为具有选择性强、能耗低、萃取剂易再生和机械化程度高等优势的溶剂萃取法,具有更好的应用前景,值得投入更多的精力去开发新型萃取剂。
  • 表  1  废水中铬回收工艺比较

    Table  1.   Comparison of chromium recovery processes from wastewater

    方法基本原理优点缺点
    化学沉淀法Cr(VI)还原至Cr(Ⅲ),再碱性沉淀;
    Cr(VI)与金属离子直接形成沉淀
    成本低,操作简单,容易实现工业化产品纯度低,需要反复调节溶液pH
    离子交换法树脂中阴离子与Cr(VI)发生交换,使其被树脂固定选择性好,产品纯度高,设备简单生产效率低,树脂易中毒
    吸附法利用分子引力或化学键力的作用吸附Cr(VI)操作简单,适应性强,二次污染小吸附效率低,循环性能不高
    电解法Cr(VI)在阴极发生还原反应;
    利用电极还原产物与Cr(VI)反应
    去除效率高,操作简单耗能大,极板易钝化,产品纯度不高
    溶剂萃取法活性基团与Cr(VI)发生配位反应,
    使其从水相转移至有机相
    选择性好,产品纯度高,萃取剂可以再生一次性投入成本高
    下载: 导出CSV
  • [1] Liu Chao, Li Haijun, Zhu Jianyan, et al. Study on technology for preparation of high-purity vanadium pentoxide for aviation materials[J]. Iron Steel Vanadium Titanium, 2021,42(1):38−42. (刘超, 李海军, 朱建岩, 等. 航空材料用高纯五氧化二钒工艺技术研究[J]. 钢铁钒钛, 2021,42(1):38−42.
    [2] Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration[J]. Iron Steel Vanadium Titanium, 2020,41(4):65−69. (孙成宁, 黄伟, 张军超. 基于机械振动的钒基储氢汽车电池合金制备及性能研究[J]. 钢铁钒钛, 2020,41(4):65−69.
    [3] Xu Wenjie, Long Jun, Liu Jun, et al. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery[J]. Chemical Engineering Journal, 2021,428(33):131203.
    [4] Li Hongyi, Wang Chengjie, Lin Minmin, et al. Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium-chromium slag[J]. Powder Technology, 2020,360:503−508. doi: 10.1016/j.powtec.2019.10.074
    [5] Shen Biao. Temperature control of acid leaching process for calcified clinker of vanadium slag[J]. Iron Steel Vanadium Titanium, 2018,39(5):30−36. (申彪. 钒渣钙化焙烧熟料酸浸工艺温度控制[J]. 钢铁钒钛, 2018,39(5):30−36.
    [6] Wang Ying. Discussion on routes of recycling waste water produced from APV precipitation with acidic ammonium salts[J]. Iron Steel Vanadium Titanium, 2012,33(3):20−23. (王英. 酸性铵盐沉钒废水循环利用途径探讨[J]. 钢铁钒钛, 2012,33(3):20−23. doi: 10.7513/j.issn.1004-7638.2012.03.005
    [7] Julia E Rager, Mina Suh, Grace A Chappell, et al. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J]. Toxicology Letters, 2019,305:40−50. doi: 10.1016/j.toxlet.2019.01.011
    [8] Liu Fang. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environmental Pollution & Control, 2014,36(4):69−74. (刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014,36(4):69−74.
    [9] Bai Yuan, Gao Lingchao, Liu Huan. Removal of Cr (Ⅵ) by chemical precipitation from industrial wastewater[J]. China Resources Comprehensive Utilization, 2012,30(11):30−33. (白圆, 高凌超, 刘寰. 化学沉淀法去除工业废水中的六价铬[J]. 中国资源综合利用, 2012,30(11):30−33. doi: 10.3969/j.issn.1008-9500.2012.11.014
    [10] Wu Chengbao, Hu Xiaofang, Luo Weiyin, et al. Discussion on treatment of chromium containing wastewater with ferrite method[J]. Electroplating & Finishing, 2006,25(5):51−55. (吴成宝, 胡小芳, 罗韦因, 等. 浅谈铁氧体法处理电镀含铬废水[J]. 电镀与涂饰, 2006,25(5):51−55. doi: 10.3969/j.issn.1004-227X.2006.05.017
    [11] Yan Kang, Liu Zhilou, Li Zilang, et al. Selective separation of chromium from sulphuric acid leaching solutions of mixed electroplating sludge using phosphate precipitation[J]. Hydrometallurgy, 2019,186:42−49.
    [12] Li Hangbin, Qian Bo, Huang Congcong, et al. Treatment of hexavalent chromium-containing electroplating wastewater by barium salt precipitation[J]. Electroplating & Finishing, 2014,33(9):391−395. (李航彬, 钱波, 黄聪聪, 等. 钡盐沉淀法处理六价铬电镀废水[J]. 电镀与涂饰, 2014,33(9):391−395. doi: 10.3969/j.issn.1004-227X.2014.09.017
    [13] Yang Minge, Wang Xuewen, Meng Yuqi, et al. Recovery of chromium from vanadium precipitated solution by precipitation with lead salt and leaching with sodium carbonate[J]. Hydrometallurgy, 2020,198:105501.
    [14] Untea I, Tudorache E, Neagu V. Cr(VI)-containing wastewater treatment by means of ion exchange on weak- and strong-base anion exchangers[J]. Journal of Applied Polymer Science, 2002,86:2093−2098. doi: 10.1002/app.11175
    [15] Fethiye Gode, Erol Pehlivan. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins[J]. Journal of Hazardous Materials, 2005,119:175−182. doi: 10.1016/j.jhazmat.2004.12.004
    [16] Zeng Jing. Study on treatment of chromium containing wastewater by ion exchange[J]. Jiangxi Chemical Industry, 2019,(3):108−110. (曾婧. 离子交换法处理含铬废水的研究[J]. 江西化工, 2019,(3):108−110. doi: 10.3969/j.issn.1008-3103.2019.03.033
    [17] Bhatti Asif Ali, Memon Shahabuddin, Memon Najma, et al. Evaluation of chromium(VI) sorption efficiency of modified amberlite XAD-4 resin[J]. Arabian Journal of Chemistry, 2017,10:1111−1118. doi: 10.1016/j.hydromet.2020.105501
    [18] Jia Dongmei, Cai Huamin, Duan Yongzheng, et al. Efficient adsorption to hexavalent chromium by iron oxalate modified D301: Characterization, performance and mechanisms[J]. Chinese Journal of Chemical Engineering, 2021,33:61−69. doi: 10.1016/j.cjche.2020.06.031
    [19] Hu Xinjiang, Wang Jingsong, Liu Yunguo, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011,185:306−314. doi: 10.1016/j.jhazmat.2010.09.034
    [20] Polowczyk Izabela, Urbano Bruno F, Rivas Bernabé L, et al. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-D-glucamine groups[J]. Chemical Engineering Journal, 2016,284:395−404. doi: 10.1016/j.cej.2015.09.018
    [21] Chen Feng, Zhang Mou, Ma Lulu, et al. Nitrogen and sulfur codoped micro-mesoporous carbon sheets derived from natural biomass for synergistic removal of chromium(VI): adsorption behavior and computing mechanism[J]. Science of the Total Environment, 2020,730:138930. doi: 10.1016/j.scitotenv.2020.138930
    [22] Kekes Tryfon, Kolliopoulos Georgios, Tzia Constantina. Hexavalent chromium adsorption onto crosslinked chitosan and chitosan/β-cyclodextrin beads: novel materials for water decontamination[J]. Journal of Environmental Chemical Engineering, 2021,9:105581. doi: 10.1016/j.jece.2021.105581
    [23] Mthombeni Nomcebo H, Mbakop Sandrine, Ray Sekhar Chandra, et al. Highly efficient removal of chromium (VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite-polypyrrole composite[J]. Journal of Environmental Chemical Engineering, 2018,6:4008−4017. doi: 10.1016/j.jece.2018.05.038
    [24] Rodrigues E, Almeida O, Brasil H, et al. Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study[J]. Applied Clay Science, 2019,172:57−64. doi: 10.1016/j.clay.2019.02.018
    [25] Afshin Shirin, Rashtbari Yousef, Vosough Mehdi, et al. Application of Box-Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study[J]. Journal of Water Process Engineering, 2021,42:102113. doi: 10.1016/j.jwpe.2021.102113
    [26] Li Huiyu, Li Na, Zuo Pingping, et al. Efficient adsorption-reduction synergistic effects of sulfur, nitrogen and oxygen heteroatom co-doped porous carbon spheres for chromium(VI) removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021,618:126502. doi: 10.1016/j.colsurfa.2021.126502
    [27] Lei Yingchun. Study on recovery of chromium from high concentration chromium containing wastewater by electrolysis[J]. Journal of Safety and Environment, 2012,11(6):43−45. (雷英春. 电解法处理高浓度含铬废水回收铬的研究[J]. 安全与环境学报, 2012,11(6):43−45. doi: 10.3969/j.issn.1009-6094.2012.06.010
    [28] Hamdan Shaima S, El-Naas Muftah H. Characterization of the removal of chromium(VI) from groundwater by electrocoagulation[J]. Journal of Industrial and Engineering Chemistry, 2014,20:2775−2781. doi: 10.1016/j.jiec.2013.11.006
    [29] Wan Xuxing, Huang Yaning, Wang Mengyun, et al. Study on treatment of chromium-containing wastewater by using three-dimensional electrode electrolysis method[J]. Electroplating & Pollution Control, 2019,39(5):68−72. (万旭兴, 黄亚宁, 王梦芸, 等. 三维电极电解法处理含铬废水的研究[J]. 电镀与环保, 2019,39(5):68−72. doi: 10.3969/j.issn.1000-4742.2019.05.022
    [30] Guo Yufeng, Cui Jiansheng, Li Jingyin, et al. Reactive extraction of Cr(VI) in wastewater using primary amine N1923[J]. Environmental Science & Technology, 2003,(5):15−16. (郭玉凤, 崔建升, 李景印, 等. 伯胺N1923反应萃取含Cr6+废水的研究[J]. 环境科学与技术, 2003,(5):15−16. doi: 10.3969/j.issn.1003-6504.2003.05.007
    [31] Duan Qunzhang. Study on extraction mechanism of chromium(Ⅵ) by TnOA[J]. Hydrometallurgy of China, 2001,(3):141−148,155. (段群章. 三正辛胺(TnOA)取萃Cr(Ⅵ)的机理研究[J]. 湿法冶金, 2001,(3):141−148,155. doi: 10.3969/j.issn.1009-2617.2001.03.009
    [32] Bachmann R T, Wiemken D, Tengkiat A B, et al. Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil[J]. Separation and Purification Technology, 2010,75:303−309. doi: 10.1016/j.seppur.2010.08.019
    [33] Semghouni Hassina, Bey Said, Figoli Aberto, et al. Chromium (VI) removal by Aliquat-336 in a novel multiframe flat sheet membrane contactor[J]. Chemical Engineering and Processing, 2020,147:107765. doi: 10.1016/j.cep.2019.107765
    [34] Zambare Rahul S, Nemade Parag R. Ionic liquid-modified graphene oxide sponge for hexavalent chromium removal from water[J]. Colloids and Surfaces A, 2021,609:125657. doi: 10.1016/j.colsurfa.2020.125657
    [35] Ishfaq Ayesha, Ilyas Sadia, Yaseen Arslan, et al. Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent[J]. Separation and Purification Technology, 2019,209:964−71. doi: 10.1016/j.seppur.2018.09.050
    [36] Muthuraman G, Teng Tjoon Tow, Leh Cheu Peng, et al. Use of bulk liquid membrane for the removal of chromium (VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier[J]. Desalination, 2009,249:884−890. doi: 10.1016/j.desal.2009.09.008
    [37] Kumbasar Recep Ali. Extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using TOPO as extractant[J]. Journal of Hazardous Materials, 2009,167:1141−1147. doi: 10.1016/j.jhazmat.2009.01.113
    [38] Ying Ziwen, Ren Xiulian, Li Jie, et al. Recovery of chromium(VI) in wastewater using solvent extraction with amide[J]. Hydrometallurgy, 2020,196:105440. doi: 10.1016/j.hydromet.2020.105440
  • 加载中
表(1)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  80
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回