Research progress on comprehensive recovery of chromium in vanadium bearing mother liquor
-
摘要: 介绍了沉钒母液中铬的回收,包括化学沉淀法、离子交换法、吸附法、电解法和溶剂萃取法在内的五种常见的回收方法,阐述了各自的工艺路线和基本原理,分析总结了它们的优缺点。根据沉钒母液的特点,指出企业应该在不同的需求下,合理地选择相应的回收方法。经过综合比较,认为具有选择性强、能耗低、萃取剂易再生和机械化程度高等优势的溶剂萃取法,具有更好的应用前景,值得投入更多的精力去开发新型萃取剂。Abstract: This paper introduces five common recovery methods including chemical precipitation, ion exchange, adsorption, electrolysis and solvent extraction, expounds their process routes and basic principles, and analyzes and summarizes their advantages and disadvantages. According to the characteristics of vanadium precipitation mother liquor, it is pointed out that enterprises should reasonably select the corresponding recovery methods under different needs. Through comprehensive comparison, it is considered that the solvent extraction method with the advantages of strong selectivity, low energy consumption, easy regeneration of extractant and high degree of mechanization has better application prospects, and it is worth investing more energy to develop new extractants.
-
Key words:
- vanadium chromium slag /
- vanadium precipitation mother liquor /
- chromium /
- recovery /
- solvent extraction
-
表 1 废水中铬回收工艺比较
Table 1. Comparison of chromium recovery processes from wastewater
方法 基本原理 优点 缺点 化学沉淀法 Cr(VI)还原至Cr(Ⅲ),再碱性沉淀;
Cr(VI)与金属离子直接形成沉淀成本低,操作简单,容易实现工业化 产品纯度低,需要反复调节溶液pH 离子交换法 树脂中阴离子与Cr(VI)发生交换,使其被树脂固定 选择性好,产品纯度高,设备简单 生产效率低,树脂易中毒 吸附法 利用分子引力或化学键力的作用吸附Cr(VI) 操作简单,适应性强,二次污染小 吸附效率低,循环性能不高 电解法 Cr(VI)在阴极发生还原反应;
利用电极还原产物与Cr(VI)反应去除效率高,操作简单 耗能大,极板易钝化,产品纯度不高 溶剂萃取法 活性基团与Cr(VI)发生配位反应,
使其从水相转移至有机相选择性好,产品纯度高,萃取剂可以再生 一次性投入成本高 -
[1] Liu Chao, Li Haijun, Zhu Jianyan, et al. Study on technology for preparation of high-purity vanadium pentoxide for aviation materials[J]. Iron Steel Vanadium Titanium, 2021,42(1):38−42. (刘超, 李海军, 朱建岩, 等. 航空材料用高纯五氧化二钒工艺技术研究[J]. 钢铁钒钛, 2021,42(1):38−42. [2] Sun Chengning, Huang Wei, Zhang Junchao. Preparation and properties of vanadium-based hydrogen storage alloy based on mechanical vibration[J]. Iron Steel Vanadium Titanium, 2020,41(4):65−69. (孙成宁, 黄伟, 张军超. 基于机械振动的钒基储氢汽车电池合金制备及性能研究[J]. 钢铁钒钛, 2020,41(4):65−69. [3] Xu Wenjie, Long Jun, Liu Jun, et al. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery[J]. Chemical Engineering Journal, 2021,428(33):131203. [4] Li Hongyi, Wang Chengjie, Lin Minmin, et al. Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium-chromium slag[J]. Powder Technology, 2020,360:503−508. doi: 10.1016/j.powtec.2019.10.074 [5] Shen Biao. Temperature control of acid leaching process for calcified clinker of vanadium slag[J]. Iron Steel Vanadium Titanium, 2018,39(5):30−36. (申彪. 钒渣钙化焙烧熟料酸浸工艺温度控制[J]. 钢铁钒钛, 2018,39(5):30−36. [6] Wang Ying. Discussion on routes of recycling waste water produced from APV precipitation with acidic ammonium salts[J]. Iron Steel Vanadium Titanium, 2012,33(3):20−23. (王英. 酸性铵盐沉钒废水循环利用途径探讨[J]. 钢铁钒钛, 2012,33(3):20−23. doi: 10.7513/j.issn.1004-7638.2012.03.005 [7] Julia E Rager, Mina Suh, Grace A Chappell, et al. Review of transcriptomic responses to hexavalent chromium exposure in lung cells supports a role of epigenetic mediators in carcinogenesis[J]. Toxicology Letters, 2019,305:40−50. doi: 10.1016/j.toxlet.2019.01.011 [8] Liu Fang. Treatment of chromium containing heavy metal wastewater by reduction and sedimentation process[J]. Environmental Pollution & Control, 2014,36(4):69−74. (刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014,36(4):69−74. [9] Bai Yuan, Gao Lingchao, Liu Huan. Removal of Cr (Ⅵ) by chemical precipitation from industrial wastewater[J]. China Resources Comprehensive Utilization, 2012,30(11):30−33. (白圆, 高凌超, 刘寰. 化学沉淀法去除工业废水中的六价铬[J]. 中国资源综合利用, 2012,30(11):30−33. doi: 10.3969/j.issn.1008-9500.2012.11.014 [10] Wu Chengbao, Hu Xiaofang, Luo Weiyin, et al. Discussion on treatment of chromium containing wastewater with ferrite method[J]. Electroplating & Finishing, 2006,25(5):51−55. (吴成宝, 胡小芳, 罗韦因, 等. 浅谈铁氧体法处理电镀含铬废水[J]. 电镀与涂饰, 2006,25(5):51−55. doi: 10.3969/j.issn.1004-227X.2006.05.017 [11] Yan Kang, Liu Zhilou, Li Zilang, et al. Selective separation of chromium from sulphuric acid leaching solutions of mixed electroplating sludge using phosphate precipitation[J]. Hydrometallurgy, 2019,186:42−49. [12] Li Hangbin, Qian Bo, Huang Congcong, et al. Treatment of hexavalent chromium-containing electroplating wastewater by barium salt precipitation[J]. Electroplating & Finishing, 2014,33(9):391−395. (李航彬, 钱波, 黄聪聪, 等. 钡盐沉淀法处理六价铬电镀废水[J]. 电镀与涂饰, 2014,33(9):391−395. doi: 10.3969/j.issn.1004-227X.2014.09.017 [13] Yang Minge, Wang Xuewen, Meng Yuqi, et al. Recovery of chromium from vanadium precipitated solution by precipitation with lead salt and leaching with sodium carbonate[J]. Hydrometallurgy, 2020,198:105501. [14] Untea I, Tudorache E, Neagu V. Cr(VI)-containing wastewater treatment by means of ion exchange on weak- and strong-base anion exchangers[J]. Journal of Applied Polymer Science, 2002,86:2093−2098. doi: 10.1002/app.11175 [15] Fethiye Gode, Erol Pehlivan. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins[J]. Journal of Hazardous Materials, 2005,119:175−182. doi: 10.1016/j.jhazmat.2004.12.004 [16] Zeng Jing. Study on treatment of chromium containing wastewater by ion exchange[J]. Jiangxi Chemical Industry, 2019,(3):108−110. (曾婧. 离子交换法处理含铬废水的研究[J]. 江西化工, 2019,(3):108−110. doi: 10.3969/j.issn.1008-3103.2019.03.033 [17] Bhatti Asif Ali, Memon Shahabuddin, Memon Najma, et al. Evaluation of chromium(VI) sorption efficiency of modified amberlite XAD-4 resin[J]. Arabian Journal of Chemistry, 2017,10:1111−1118. doi: 10.1016/j.hydromet.2020.105501 [18] Jia Dongmei, Cai Huamin, Duan Yongzheng, et al. Efficient adsorption to hexavalent chromium by iron oxalate modified D301: Characterization, performance and mechanisms[J]. Chinese Journal of Chemical Engineering, 2021,33:61−69. doi: 10.1016/j.cjche.2020.06.031 [19] Hu Xinjiang, Wang Jingsong, Liu Yunguo, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials, 2011,185:306−314. doi: 10.1016/j.jhazmat.2010.09.034 [20] Polowczyk Izabela, Urbano Bruno F, Rivas Bernabé L, et al. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-D-glucamine groups[J]. Chemical Engineering Journal, 2016,284:395−404. doi: 10.1016/j.cej.2015.09.018 [21] Chen Feng, Zhang Mou, Ma Lulu, et al. Nitrogen and sulfur codoped micro-mesoporous carbon sheets derived from natural biomass for synergistic removal of chromium(VI): adsorption behavior and computing mechanism[J]. Science of the Total Environment, 2020,730:138930. doi: 10.1016/j.scitotenv.2020.138930 [22] Kekes Tryfon, Kolliopoulos Georgios, Tzia Constantina. Hexavalent chromium adsorption onto crosslinked chitosan and chitosan/β-cyclodextrin beads: novel materials for water decontamination[J]. Journal of Environmental Chemical Engineering, 2021,9:105581. doi: 10.1016/j.jece.2021.105581 [23] Mthombeni Nomcebo H, Mbakop Sandrine, Ray Sekhar Chandra, et al. Highly efficient removal of chromium (VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite-polypyrrole composite[J]. Journal of Environmental Chemical Engineering, 2018,6:4008−4017. doi: 10.1016/j.jece.2018.05.038 [24] Rodrigues E, Almeida O, Brasil H, et al. Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study[J]. Applied Clay Science, 2019,172:57−64. doi: 10.1016/j.clay.2019.02.018 [25] Afshin Shirin, Rashtbari Yousef, Vosough Mehdi, et al. Application of Box-Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study[J]. Journal of Water Process Engineering, 2021,42:102113. doi: 10.1016/j.jwpe.2021.102113 [26] Li Huiyu, Li Na, Zuo Pingping, et al. Efficient adsorption-reduction synergistic effects of sulfur, nitrogen and oxygen heteroatom co-doped porous carbon spheres for chromium(VI) removal[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021,618:126502. doi: 10.1016/j.colsurfa.2021.126502 [27] Lei Yingchun. Study on recovery of chromium from high concentration chromium containing wastewater by electrolysis[J]. Journal of Safety and Environment, 2012,11(6):43−45. (雷英春. 电解法处理高浓度含铬废水回收铬的研究[J]. 安全与环境学报, 2012,11(6):43−45. doi: 10.3969/j.issn.1009-6094.2012.06.010 [28] Hamdan Shaima S, El-Naas Muftah H. Characterization of the removal of chromium(VI) from groundwater by electrocoagulation[J]. Journal of Industrial and Engineering Chemistry, 2014,20:2775−2781. doi: 10.1016/j.jiec.2013.11.006 [29] Wan Xuxing, Huang Yaning, Wang Mengyun, et al. Study on treatment of chromium-containing wastewater by using three-dimensional electrode electrolysis method[J]. Electroplating & Pollution Control, 2019,39(5):68−72. (万旭兴, 黄亚宁, 王梦芸, 等. 三维电极电解法处理含铬废水的研究[J]. 电镀与环保, 2019,39(5):68−72. doi: 10.3969/j.issn.1000-4742.2019.05.022 [30] Guo Yufeng, Cui Jiansheng, Li Jingyin, et al. Reactive extraction of Cr(VI) in wastewater using primary amine N1923[J]. Environmental Science & Technology, 2003,(5):15−16. (郭玉凤, 崔建升, 李景印, 等. 伯胺N1923反应萃取含Cr6+废水的研究[J]. 环境科学与技术, 2003,(5):15−16. doi: 10.3969/j.issn.1003-6504.2003.05.007 [31] Duan Qunzhang. Study on extraction mechanism of chromium(Ⅵ) by TnOA[J]. Hydrometallurgy of China, 2001,(3):141−148,155. (段群章. 三正辛胺(TnOA)取萃Cr(Ⅵ)的机理研究[J]. 湿法冶金, 2001,(3):141−148,155. doi: 10.3969/j.issn.1009-2617.2001.03.009 [32] Bachmann R T, Wiemken D, Tengkiat A B, et al. Feasibility study on the recovery of hexavalent chromium from a simulated electroplating effluent using Alamine 336 and refined palm oil[J]. Separation and Purification Technology, 2010,75:303−309. doi: 10.1016/j.seppur.2010.08.019 [33] Semghouni Hassina, Bey Said, Figoli Aberto, et al. Chromium (VI) removal by Aliquat-336 in a novel multiframe flat sheet membrane contactor[J]. Chemical Engineering and Processing, 2020,147:107765. doi: 10.1016/j.cep.2019.107765 [34] Zambare Rahul S, Nemade Parag R. Ionic liquid-modified graphene oxide sponge for hexavalent chromium removal from water[J]. Colloids and Surfaces A, 2021,609:125657. doi: 10.1016/j.colsurfa.2020.125657 [35] Ishfaq Ayesha, Ilyas Sadia, Yaseen Arslan, et al. Hydrometallurgical valorization of chromium, iron, and zinc from an electroplating effluent[J]. Separation and Purification Technology, 2019,209:964−71. doi: 10.1016/j.seppur.2018.09.050 [36] Muthuraman G, Teng Tjoon Tow, Leh Cheu Peng, et al. Use of bulk liquid membrane for the removal of chromium (VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier[J]. Desalination, 2009,249:884−890. doi: 10.1016/j.desal.2009.09.008 [37] Kumbasar Recep Ali. Extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using TOPO as extractant[J]. Journal of Hazardous Materials, 2009,167:1141−1147. doi: 10.1016/j.jhazmat.2009.01.113 [38] Ying Ziwen, Ren Xiulian, Li Jie, et al. Recovery of chromium(VI) in wastewater using solvent extraction with amide[J]. Hydrometallurgy, 2020,196:105440. doi: 10.1016/j.hydromet.2020.105440 -

计量
- 文章访问数: 459
- HTML全文浏览量: 191
- PDF下载量: 57
- 被引次数: 0