中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒铬渣浸出液原位制备VS4试验研究

温婧 夏甫哈提·艾日肯江  姜涛

温婧, 夏甫哈提·艾日肯江 , 姜涛. 钒铬渣浸出液原位制备VS4试验研究[J]. 钢铁钒钛, 2021, 42(1): 1-7. doi: 10.7513/j.issn.1004-7638.2021.01.001
引用本文: 温婧, 夏甫哈提·艾日肯江 , 姜涛. 钒铬渣浸出液原位制备VS4试验研究[J]. 钢铁钒钛, 2021, 42(1): 1-7. doi: 10.7513/j.issn.1004-7638.2021.01.001
Wen Jing, Shapkat Arken, Jiang Tao. In-situ preparation of VS4 from vanadium-containing leaching solution of vanadium chromium slag[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 1-7. doi: 10.7513/j.issn.1004-7638.2021.01.001
Citation: Wen Jing, Shapkat Arken, Jiang Tao. In-situ preparation of VS4 from vanadium-containing leaching solution of vanadium chromium slag[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 1-7. doi: 10.7513/j.issn.1004-7638.2021.01.001

钒铬渣浸出液原位制备VS4试验研究

doi: 10.7513/j.issn.1004-7638.2021.01.001
基金项目: 国家自然科学基金面上项目(51574082)。
详细信息
    作者简介:

    姜涛(1973—),男,辽宁本溪人,博士研究生,教授,主要工作方向:冶金资源清洁高效利用技术,E-mail:jiangt@smm.neu.edu.cn。

  • 中图分类号: TF841.3

In-situ preparation of VS4 from vanadium-containing leaching solution of vanadium chromium slag

  • 摘要: 目前传统的提钒工艺仍以制备钢铁和化工行业的钒产品为主,为进一步促进钒产品深加工,提出含钒浸出液原位制备高附加值含钒材料VS4的新技术,该产品可用于储能和催化等领域。以钒铬渣为原料,分别以不同焙烧、浸出工艺所得含钒浸出液为钒源,硫代乙酰胺为硫源制备了VS4产品,并对其物相和微观形貌进行表征。结果表明,钒铬渣钠化焙烧水浸工艺和钙化焙烧碳酸钠浸出工艺所得含钒浸出液均可作为含钒母液原位转化VS4,但钠化焙烧水浸工艺由于焙烧过程中生成硅酸钠、铬酸钠等产物导致浸出液中含大量钠、硅、铬等杂质离子,所得VS4产品纯度较低。而钙化焙烧碳酸钠浸出工艺中由于钙盐对钒的选择性钙化效应,浸出过程钒铬分离效率很高,所得VS4产品纯度较高,且与分析纯偏钒酸钠为钒源制备的VS4具有相似的形貌。该工艺不仅实现了钒铬渣的增值利用,更显著缩短了含钒材料VS4的制备流程。
  • 图  1  钒铬渣的XRD图谱

    Figure  1.  XRD pattern of vanadium chromium slag

    图  2  不同焙烧方式焙烧熟料的XRD图谱

    Figure  2.  XRD patterns of roasted samples under different roasting methods

    图  3  不同提钒方式钒铬浸出率比较

    Figure  3.  Comparison of leaching rates of vanadium and chromium by different methods

    图  4  偏钒酸钠为钒源所得VS4的XRD图谱(a)和VS4标准卡片(b)

    Figure  4.  XRD pattern of (a) VS4 with NaVO3 as vanadium source and (b) VS4 standard card

    图  5  偏钒酸钠为钒源所得VS4的SEM形貌

    Figure  5.  SEM of VS4 with NaVO3 as vanadium source

    图  6  n(Na2CO3)/n(V2O3)为1条件下所得VS4的XRD图谱

    Figure  6.  XRD pattern of VS4 with n(Na2CO3)/n(V2O3) of 1

    图  7  n(Na2CO3)/n(V2O3)为1条件下所得VS4的SEM形貌

    Figure  7.  SEM of VS4 with n(Na2CO3)/n(V2O3) of 1

    图  8  n(Na2CO3)/n(V2O3)为3条件下所得VS4的XRD图谱

    Figure  8.  XRD pattern of VS4 with n(Na2CO3)/n(V2O3) of 3

    图  9  n(Na2CO3)/n(V2O3)为3条件下所得VS4的SEM形貌

    Figure  9.  SEM of VS4 with n(Na2CO3)/n(V2O3) of 3

    图  10  钙化焙烧碳酸钠浸出液为母液所得VS4的XRD谱

    Figure  10.  XRD pattern of VS4 obtained from Na2CO3 leaching liquid after CaO roasting

    图  11  钙化焙烧碳酸钠浸出液为母液所得VS4的SEM形貌

    Figure  11.  SEM of VS4 obtained from Na2CO3 leaching liquid after CaO roasting

    表  1  钒铬渣主要化学成分

    Table  1.   Chemical compositions of the vanadium-chromium slag                 %

    FeOV2O3Cr2O3SiO2TiO2MnOCaOTotal
    39.2111.889.4515.7311.197.031.6796.16
    下载: 导出CSV
  • [1] Moskalyk R R, Alfantazi A M. Processing of vanadium: a review[J]. Minerals Engineering, 2003,16(9):793−805. doi: 10.1016/S0892-6875(03)00213-9
    [2] Zhang Yimin, Bao Shenxue, Liu Tao, et al. The technology of extracting vanadium from stone coal in China: Current status and future prospects[J]. Hydrometallurgy, 2011,109(1−2):116−124. doi: 10.1016/j.hydromet.2011.06.002
    [3] Peng H. A literature review on leaching and recovery of vanadium[J]. J. Environ. Chem. Eng., 2019,7:103313. doi: 10.1016/j.jece.2019.103313
    [4] Rout C S, Khare R, Kashid R V, et al. Metallic few-layer flowerlike VS2 nanosheets as field emitters[J]. Eur. J. Inorg. Chem., 2014:5331−5336.
    [5] Sun R, Wei Q, Li Q, et al. Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery[J]. ACS Appl. Mater. Interfaces, 2015,7:20902−20908. doi: 10.1021/acsami.5b06385
    [6] Ulaganathan M, Aravindan V, Yan Q, et al. Recent advancements in all-Vanadium redox flow batteries[J]. Adv. Mater. Interfaces., 2016,3:1500309. doi: 10.1002/admi.201500309
    [7] Zhou Y, Liu P, Jiang F, et al. Vanadium sulfide sub-microspheres: A new near-infrared-driven photocatalyst[J]. J. Colloid Interface Sci., 2017,498:442−448. doi: 10.1016/j.jcis.2017.03.081
    [8] Liu B, Du H, Wang S N, et al. A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO3 binary system[J]. AIChE Journal, 2013,59(2):541−552. doi: 10.1002/aic.13819
    [9] Wang J. Research on the systhesis and lithium/sodium battery anode electrochemical performance of VS4/rGO hybrid[D]. Wuhan: Central China Normal University, 2018.
    [10] Mohan P, Yang J, Jena A, et al. VS2/rGO hybrid nanosheets prepared by annealing of VS4/rGO[J]. J. Solid State Chem., 2015,224:82−87. doi: 10.1016/j.jssc.2014.06.031
    [11] Wen J, Jiang T, Shapkat Arken. Selective leaching of vanadium from vanadium-chromium slag using sodium bicarbonate solution and subsequent in-situ preparation of flower-like VS2[J]. Hydrometallurgy, 2020,198:105498. doi: 10.1016/j.hydromet.2020.105498
    [12] Li M, Xiao L, Liu J J, et al. Effective extraction of vanadium and chromium from high chromium content vanadium slag by sodium roasting and water leaching[J]. Mater. Sci. Forum., 2016,863:144−148. doi: 10.4028/www.scientific.net/MSF.863.144
    [13] Wen J, Jiang T, Liu Y J, et al. Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: optimization using response surface methodology[J]. Miner. Process. Extr. Metall. Rev., 2018,40:56−66.
    [14] Wen J, Jiang T, Zheng X, et al. Efficient separation of chromium and vanadium by calcification roasting–sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation[J]. Sep. Purif. Technol., 2020,230:115881. doi: 10.1016/j.seppur.2019.115881
    [15] Wen J, Jiang T, Wang J P, et al. An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings[J]. J. Hazard. Mater., 2019,378:120733. doi: 10.1016/j.jhazmat.2019.06.010
    [16] Li H Y, Wang C J, Yuan Y H, et al. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag[J]. Journal of Cleaner Production, 2020,260:121091. doi: 10.1016/j.jclepro.2020.121091
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  60
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回