留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

攀西钛矿球团焦炉煤气还原研究

叶恩东 刘娟 胡元金

叶恩东, 刘娟, 胡元金. 攀西钛矿球团焦炉煤气还原研究[J]. 钢铁钒钛, 2021, 42(1): 32-37. doi: 10.7513/j.issn.1004-7638.2021.01.005
引用本文: 叶恩东, 刘娟, 胡元金. 攀西钛矿球团焦炉煤气还原研究[J]. 钢铁钒钛, 2021, 42(1): 32-37. doi: 10.7513/j.issn.1004-7638.2021.01.005
Ye Endong, Liu Juan, Hu Yuanjin. Study on reduction of panxi titanium ore pellets by coke oven gas[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 32-37. doi: 10.7513/j.issn.1004-7638.2021.01.005
Citation: Ye Endong, Liu Juan, Hu Yuanjin. Study on reduction of panxi titanium ore pellets by coke oven gas[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 32-37. doi: 10.7513/j.issn.1004-7638.2021.01.005

攀西钛矿球团焦炉煤气还原研究

doi: 10.7513/j.issn.1004-7638.2021.01.005
详细信息
  • 中图分类号: TF823

Study on reduction of panxi titanium ore pellets by coke oven gas

  • 摘要: 针对攀西钛精矿粒度细、直接入炉冶炼钛渣难的问题,提出细粒级钛矿制备钛矿球团,钛矿球团焦炉煤气还原,并与细粒级钛精矿开展对比试验研究。结果表明:钛矿球团通过预焙烧后出现微裂纹和孔洞,有利于气相还原反应的进行,当还原温度在950 ℃时,钛矿球团焦炉煤气还原4 h后,金属化率可达85%以上,还原过程中钛矿球团物相结构发生较大变化,其主要物相由铁板钛矿相变成金属铁相、金红石相和少量钛铁矿相;随着反应进行钛矿球团中金属Fe逐渐显现、呈星点状分布、随之长大,最后连接成片。为攀西细粒级钛精矿冶炼钛渣提供了一定理论支撑。
  • 图  1  实验室煤气还原氧化球团装置

    Figure  1.  Device diagram of laboratory gas reduction of oxidized pellets

    图  2  钛矿氧化球团XRD谱

    Figure  2.  XRD pattern of oxidized titanium ore pellets

    图  3  细粒级钛精矿和氧化球团扫描电镜形貌

    Figure  3.  SEM of fine-grained titanium concentrate and oxidized pellets

    图  4  温度对球团金属化率的影响

    Figure  4.  Influence of temperature on metallization rate of the pellets

    图  5  还原时间对球团金属化率的影响

    Figure  5.  Effect of reduction time on the metallization rate of pellets

    图  6  钛精矿氧化球团

    Figure  6.  Oxidized pellets of titanium concentrate

    图  7  还原钛精矿球团

    Figure  7.  Reduced titanium concentrate pellets

    图  8  还原球团XRD

    Figure  8.  XRD pattern of reduced pellets

    图  9  不同还原时间下还原球团扫描电镜形貌及还原球团局部SEM形貌

    Figure  9.  SEM of the reduced pellets at different reduction time

    表  1  攀西细粒级钛精矿典型粒度分析

    Table  1.   Particle size distribution of typical Panxi titanium concentrate

    粒径/mm含量/%
    >0.25 0
    0.25~0.125 10.21
    0.125~0.09 15.08
    0.09~0.074 9.57
    0.074~0.044 36.6
    <0.044 28.54
    下载: 导出CSV

    表  2  攀西典型钛精矿化学成分

    Table  2.   Chemical compositions of typical Panxi titanium concentrate               %

    TiO2FeOFe2O3SiO2SCaOMgOMnO
    46.7634.956.553.980.260.954.860.721
    下载: 导出CSV

    表  3  氧化球团粒度分布

    Table  3.   Size distribution of oxidized pellets

    粒径/mm含量/%
    <10.5 8
    10.5~11.5 21
    11.5~12.5 20
    12.5~13.5 17
    13.5~14.5 14
    14.5~15.5 11
    >15.5 9
    下载: 导出CSV

    表  4  氧化球团基本指标

    Table  4.   Basic indexes of oxidized pellets

    w/%抗压强度/N转鼓指数/%
    TiO2TFeFeOS
    43.11~46.15 30.40~32.14 0.51~1.60 0.011~0.019 388~833 51.13~82.13
    45.86 31.03 0.56 0.013 665 65.98
    下载: 导出CSV

    表  5  攀钢焦炉煤气成分(体积分数)

    Table  5.   Compositions of coke oven gas from Pangang group (volume fraction) %

    CO2CnHmO2COH2CH4N2
    2.120.38.263.520.63.3
    下载: 导出CSV

    表  6  还原球团扫描电镜能谱分析(质量分数)

    Table  6.   Chemical compositions of reduced pellets via EDS (mass fraction) %

    序号OMgAlSiCaTiFe
    1#1.401.3297.28
    2#1.191.034.9092.88
    3#54.402.690.783.570.8931.105.75
    下载: 导出CSV
  • [1] Wen Xiaolian, Guo Mingbin, Ran Dingwei. Current situation, existing problems and countermeasures of titanium resources utilization in Panzhihua region[J]. Metal Mines, 2008,(8):5−10. (文孝廉, 郭明彬, 冉定伟. 攀枝花地区钛资源利用的现状、存在的问题及对策[J]. 金属矿山, 2008,(8):5−10. doi: 10.3321/j.issn:1001-1250.2008.08.002
    [2] Xiao Liujun. Resources and mineral magnetic characteristics of vanadium-titanium magnetite in Panzhihua[J]. Metal Mines, 2001,(1):28−30. (肖六均. 攀枝花钒钛磁铁矿资源及矿物磁性特征[J]. 金属矿山, 2001,(1):28−30. doi: 10.3321/j.issn:1001-1250.2001.01.011
    [3] (邹建新. 非高炉炼铁技术在攀枝花钒钛磁铁矿综合利用中的发展前景[C]//2010年非髙炉炼铁学术年会暨钒钛磁铁矿综合利用技术研讨会文集. 攀枝花: 中国金属学会, 2010: 260−264.)

    Zou Jianxin. Development prospect of non-blast furnace ironmaking technology in the comprehensive utilization of vanadium-titanium magnetite in Panzhihua[C]//Proceedings of the 2010 Annual Conference of Smelting Ironmaking in Non-Gao Furnace and Symposium on The Comprehensive Utilization Technology of Vanadium-titanium Magnetite. Panzhihua: Chinese Society of Metals, 2010: 260−264.
    [4] Hu Junge. Development of gas-based shaft furnace direct reduction technology[C]//Proceedings of the 5th International Congress on the Science and Technology of Ironmaking. 2006: 1292−1296.
    [5] Wei Guangliang. Preparation of metallizaed pellets from Panzhihua titanium concerntrate by pre-reduction[J]. Iron Steel Vanadium Titanium, 2018,39(3):7−11. (魏光亮. 攀枝花钛精矿预还原制备金属化球团技术研究[J]. 钢铁钒钛, 2018,39(3):7−11. doi: 10.7513/j.issn.1004-7638.2018.03.002
    [6] Han Kexi. Experimental study on granulation of fine-grained titanium concertrate[J]. Panzhihua Sci-tech and Information, 2011,(4):52−56. (韩可喜. 细粒级钛精矿造粒试验研究[J]. 攀枝花科技与信息, 2011,(4):52−56.
    [7] Ye Endong. Study on oxidation modification of Panzhihua titanium concentrate[J]. Inorganic Salt Industry, 2014,(10):26−29. (叶恩东. 攀枝花钛精矿氧化改性研究[J]. 无机盐工业, 2014,(10):26−29. doi: 10.3969/j.issn.1006-4990.2014.10.006
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  30
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-06
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回