Study on technology for preparation of high-purity vanadium pentoxide for aviation materials
-
摘要: 针对低品位钒渣生产高纯五氧化二钒工艺的生产流程,从提高钒回收率、降低生产资源及能源消耗、提高多钒酸铵品位、提高五氧化二钒品位、降低产品杂质等多方面进行了系统性研究,使钒渣转换率达到86%以上,多钒酸铵品位达到89.5%以上,五氧化二钒品位达到99%以上,各项杂质含量和高密度金属夹杂物控制等达到高端客户美国大型跨国集团肯纳、雷丁钛合金企业的要求。Abstract: Based on the process for production of high purity vanadium pentoxide from low grade vanadium slag, a systematic research was carried out for improving the vanadium recovery rate, the grade of ammonium polyvanadate and vanadium pentoxide, and decreasing the material and energy consumption as well as the product impurities simultaneously. The conversion rate more than 86% for the vanadium slag, the grade more than 89.5% and 99% respectively for ammonium polyvanadate and vanadium pentoxide can be obtained finally. The content of impurities and high density metal inclusions in products can meet the requirements of the customers such as Kennametal and Reading titanium alloy companies.
-
Key words:
- high-purity vanadium pentoxide /
- vanadium slag /
- ammonium polyvanadate /
- low impurity
-
表 1 乌拉尔99%航空材料用五氧化二钒片剂指标要求及实际生产片剂对比
Table 1. The index requirements of the Ural 99% vanadium pentoxide tablets for aviation materials and the actual index of the vanadium pentoxide tablets
% 指标 V2O5 Si Fe P S As K2O+Na2O Cr 乌拉尔要求数值 99.00 0.13 0.180 0.010 0.020 0.01 0.30 0.070 实际产品数值 98.47 0.062 0.210 0.014 0.012 0.01 0.76 0.069 表 2 制得的多钒酸铵成分
Table 2. Chemical compositions of ammonium polyvanadate
% V2O5 K2O Na2O K2O+Na2O H2O 90.17 0.17 0.12 0.29 33.33 表 3 符合乌拉尔99%航空材料用五氧化二钒片剂指标
Table 3. Chemical compositions of products meeting the Indexes of Ural 99% vanadium pentoxide tablets for aviation materials
% 批号 V2O5 Si Fe P S As K2O+Na2O Al Cr F200522088C 99.57 0.053 0.073 0.006 0.010 <0.01 0.28 0.146 0.051 F200522089C 99.48 0.053 0.063 0.007 0.013 <0.01 0.27 0.132 0.051 F200522092C 99.63 0.066 0.047 0.011 0.012 <0.01 0.20 0.148 0.037 F200523095C 99.61 0.060 0.050 0.007 0.010 <0.01 0.23 0.155 0.043 F200523097C 99.51 0.049 0.054 0.009 0.011 <0.01 0.22 0.101 0.036 F200524098C 99.18 0.052 0.081 0.007 0.013 <0.01 0.21 0.122 0.040 F200524099C 99.46 0.045 0.070 0.010 0.013 <0.01 0.24 0.095 0.037 F200524103C 99.07 0.056 0.083 0.009 0.012 <0.01 0.25 0.106 0.034 F200524106C 99.01 0.056 0.112 0.004 0.010 <0.01 0.26 0.118 0.040 F200525107C 99.04 0.056 0.108 0.005 0.012 <0.01 0.26 0.120 0.040 F200525111C 99.50 0.046 0.104 0.011 0.009 <0.01 0.29 0.117 0.046 F200525112C 99.38 0.052 0.152 0.007 0.011 <0.01 0.27 0.129 0.046 -
[1] Zhu Jun, Zhu Mingming, Zhao Qi. Preparation and application of high-purity vanadium pentoxide[J]. China Nonferrous Metallurgy, 2016,(3):47−50, 79. (朱军, 朱明明, 赵奇. 高纯五氧化二钒制备及应用[J]. 中国有色冶金, 2016,(3):47−50, 79. doi: 10.3969/j.issn.1672-6103.2016.03.013 [2] Chen Donghui, Shi Lixin. Fluidized “three-step method” tablet vanadium pentoxide production device[J]. Ferroalloys, 2010,(4):19−23. (陈东辉, 石立新. 流态化“三步法”片剂五氧化二钒生产装置[J]. 铁合金, 2010,(4):19−23. doi: 10.3969/j.issn.1001-1943.2010.04.006 [3] Zhang Guigang, Chen Xiao’e, Cui Xumei. Research progress in the preparation of high-purity vanadium pentoxide[J]. Modern Engineering, 2016,(9):54−57. (张贵刚, 陈孝娥, 崔旭梅. 高纯度五氧化二钒制备技术研究进展[J]. 现代化工, 2016,(9):54−57. -