留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2对矿渣棉高温熔体黏度和结构的影响

卢曦 庞焯刚 张连增 邢相栋 高铭 宁顺利

卢曦, 庞焯刚, 张连增, 邢相栋, 高铭, 宁顺利. TiO2对矿渣棉高温熔体黏度和结构的影响[J]. 钢铁钒钛, 2021, 42(1): 55-59. doi: 10.7513/j.issn.1004-7638.2021.01.009
引用本文: 卢曦, 庞焯刚, 张连增, 邢相栋, 高铭, 宁顺利. TiO2对矿渣棉高温熔体黏度和结构的影响[J]. 钢铁钒钛, 2021, 42(1): 55-59. doi: 10.7513/j.issn.1004-7638.2021.01.009
Lu Xi, Pang Zhuogang, Zhang Lianzeng, Xing Xiangdong, Gao Ming, Ning Shunli. Effect of TiO2 on viscosity and structure of high-temperature slag wool melts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 55-59. doi: 10.7513/j.issn.1004-7638.2021.01.009
Citation: Lu Xi, Pang Zhuogang, Zhang Lianzeng, Xing Xiangdong, Gao Ming, Ning Shunli. Effect of TiO2 on viscosity and structure of high-temperature slag wool melts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 55-59. doi: 10.7513/j.issn.1004-7638.2021.01.009

TiO2对矿渣棉高温熔体黏度和结构的影响

doi: 10.7513/j.issn.1004-7638.2021.01.009
详细信息
    作者简介:

    邢相栋(1983—),男,博士,副教授,通讯作者,主要研究方向:冶金资源综合利用;E-mail:xaxingxiangdong@163.com

  • 中图分类号: TF823, TU55

Effect of TiO2 on viscosity and structure of high-temperature slag wool melts

  • 摘要: 为了研究TiO2含量的变化对矿渣棉高温熔体黏度的影响,以CaO–MgO–Al2O3–SiO2–TiO2五元渣系为研究对象,采用内柱体旋转法,系统研究了酸度系数为1.4时矿渣棉高温熔体的黏度变化规律,并结合拉曼光谱分析,探索了熔渣结构的变化特性。结果表明:当TiO2含量从1%增加至4%时,熔体黏度逐渐降低,黏流活化能由170.45 kJ/mol降至158.62 kJ/mol。当温度高于1 350 ℃时,样品黏度均低于1.5 Pa·s,流动性良好。同时,熔体内硅氧四面体结构中的Q0和Q1不断增加,而Q2和Q3逐渐降低,平均桥氧数由1.69降至0.95,熔体结构聚合度减小。Ti–O键不断增多,降低了熔体结构的稳定性。
  • 图  1  预熔渣样的XRD图谱

    Figure  1.  XRD patterns of premelting slags

    图  2  炉渣黏度测定试验装置

    Figure  2.  Experimental apparatus for the measurement of slag viscosity

    图  3  炉渣的黏度曲线

    Figure  3.  Viscosity curves of the slags

    图  4  不同TiO2含量下熔体黏度与温度的关系

    Figure  4.  Relationship between temperature and viscosity of melts with varying TiO2 contents

    图  5  不同TiO2含量下熔体的拉曼光谱曲线

    Figure  5.  Raman spectra of the melts with varying TiO2 contents

    表  1  试验渣系组成方案

    Table  1.   Experimental compositions of slags

    编号物料添加量 /g预熔渣化学成分 /%
    SlagSiO2CaOAl2O3MgOCaOSiO2Al2O3MgOTiO2Mk
    0 100 38.89 31.11 14.19 8.74 5.35
    1# 17.20 41.40 26.34 8.56 6.50 33.26 46.66 11.23 7.93 0.92 1.4
    2# 37.38 34.44 17.75 5.70 4.73 32.74 46.38 10.89 8.01 1.98 1.4
    3# 56.07 28.00 9.79 3.04 3.10 32.29 45.74 10.94 8.07 2.96 1.4
    4# 74.77 21.55 1.83 0.39 1.47 31.82 44.91 11.08 8.12 4.07 1.4
    下载: 导出CSV

    表  2  TiO2含量对熔体黏流活化能的影响

    Table  2.   Effect of TiO2 on the viscous activation energy of melts

    w(TiO2)/%回归方程拟合度(R2活化能Eη/(kJ•mol−1
    1y=20 501.66x−12.360.994 4170.45
    2y=19 705.38x−11.970.998 0163.83
    3y=19 580.75x−12.040.996 3162.79
    4y=19 079.13x−11.770.995 4158.62
    下载: 导出CSV

    表  3  硅氧四面体中Qn的面积分数以及平均桥氧数计算结果

    Table  3.   The area fraction of Qn in silicon-oxygen tetrahedron and the calculation results of mean bridging oxygen number

    序号Q0 /%Q1/%Q2/%Q3 /%平均桥氧数
    116.5423.8533.1326.481.69
    220.9026.4427.7824.881.56
    329.8019.1835.0116.011.37
    440.5232.2919.227.970.95
    下载: 导出CSV
  • [1] Liu Baoyao, Zhang Xiaobing. Feasibility of producing basalt wool by blast furnace molten slag[J]. Multipurpose Utilization of Mineral Resources, 2006,(1):44−47. (刘保瑶, 张小兵. 熔融高炉渣制造玄武岩棉的可行性分析[J]. 矿产综合利用, 2006,(1):44−47. doi: 10.3969/j.issn.1000-6532.2006.01.012
    [2] Huo Jixiang, Huang Junjie. Protection measures for No. 2 blast furnace in Shougang Jingtang[J]. Ironmaking, 2013,32(3):14−16. (霍吉祥, 黄俊杰. 首钢京唐2号高炉护炉措施[J]. 炼铁, 2013,32(3):14−16.
    [3] Gao Xuesheng, Han Xiupeng. Protection of No. 8 blast furnace in shougang Changgang[J]. Ironmaking, 2013,32(2):50−53. (高雪生, 韩秀鹏. 首钢长钢8号高炉护炉实践[J]. 炼铁, 2013,32(2):50−53.
    [4] Yan Zhiming, Lv Xuewei, He Wenchao, et al. Effect of TiO2 on the liquid zone and apparent viscosity of SiO2-CaO-8%MgO-14%Al2O3 system[J]. ISIJ International, 2017,57(1):31−36. doi: 10.2355/isijinternational.ISIJINT-2016-420
    [5] Hyunsik Park, Jun-Young Park, Gi Hyun Kim, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Research International, 2012,83(2):150−156. doi: 10.1002/srin.201100249
    [6] Gao Yanhong, Bian Lingtao, Liang Zhongyu. Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag[J]. Steel Research International, 2015,86:386−390. doi: 10.1002/srin.201400039
    [7] Rohindra D R, Lata R A, Coll R K. A simple experiment to determine the activation energy of the viscous flow of polymer solutions using a glass capillary viscometer[J]. European Journal of Physics, 2012,33(5):1457. doi: 10.1088/0143-0807/33/5/1457
    [8] Shi Zhe, Xiong Hongjin. Analysis on the viscosity of six different compound smelting reduction slag[J]. Journal of Chongqing University, 2014,37(5):37−45. (施哲, 熊洪进. 六元熔融还原渣黏度的分析[J]. 重庆大学学报, 2014,37(5):37−45. doi: 10.11835/j.issn.1000-582X.2014.05.006
    [9] Zhang Kai, Zhang Zuotai, Liu Lili, et al. Investigation of the viscosity and structural properties of CaO-SiO2-TiO2 slags[J]. Metallurgical and Materials Transactions B, 2014,45(4):1389−1397. doi: 10.1007/s11663-014-0053-8
    [10] Jiao Kexin, Zhang Jianliang, Wang Zhiyu, et al. Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags[J]. Steel Research International, 2017,88(5):1600296. doi: 10.1002/srin.201600296
    [11] Mysen B O , Virgo D , Scarfe C M. Relations between the anionic structure and viscosity of silicate melts-a Raman spectroscopic study[J]. American Mineralogist, 1980,65(7−8):690−710.
    [12] SunYongqi, Zhang Zuotai, Liu Lili, et al. FTIR, Raman and NMR investigation of CaO-SiO2-P2O5 and CaO-SiO2-TiO2-P2O5 glasses[J]. Journal of Non-Crystalline Solids, 2015,420:26−33. doi: 10.1016/j.jnoncrysol.2015.04.017
    [13] Deng Leibo, Zhang Xuefeng, Zhang Mingxing, et al. Effect of CaF2 on viscosity, structure and properties of CaO-Al2O3-MgO-SiO2 slag glass ceramics[J]. Journal of Non-Crystalline Solids, 2018,500:310−316. doi: 10.1016/j.jnoncrysol.2018.08.018
    [14] Xing Xiangdong, Pang Zhuogang, Mo Chan, et al. Effect of MgO and BaO on viscosity and structure of blast furnace slag[J]. Journal of Non-Crystalline Solids, 2020,530:119801. doi: 10.1016/j.jnoncrysol.2019.119801
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  44
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回