中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴掺杂高钛型高炉渣光催化材料制备及性能优化

霍红英 邹敏

霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021, 42(1): 65-69. doi: 10.7513/j.issn.1004-7638.2021.01.011
引用本文: 霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021, 42(1): 65-69. doi: 10.7513/j.issn.1004-7638.2021.01.011
Huo Hongying, Zou Min. Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 65-69. doi: 10.7513/j.issn.1004-7638.2021.01.011
Citation: Huo Hongying, Zou Min. Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 65-69. doi: 10.7513/j.issn.1004-7638.2021.01.011

钴掺杂高钛型高炉渣光催化材料制备及性能优化

doi: 10.7513/j.issn.1004-7638.2021.01.011
基金项目: 攀枝花市人才新政国家钒钛检测重点实验室综合资助项目(20180816);四川省大学生创新创业训练计划项目(S201911360037);攀枝花学院教学研究与改革重点项目(JJ1720-2017);四川省钒钛材料工程技术研究中心项目(2020-2FTGC-YB-02)。
详细信息
    作者简介:

    霍红英(1984—),女,副教授,主要从事钒钛材料分析、科研及教学工作,E-mail:258116574@qq.com

  • 中图分类号: X757, TQ426

Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material

  • 摘要: 为了实现以非提钛方法对高钛型高炉渣的综合利用,利用其含TiO2可制备光催化剂的特点,以攀钢高钛型高炉渣掺杂硝酸钴为原料,采用液相法掺杂并烧结制备掺杂Co的光催化剂,在紫外光下,考察了煅烧温度、掺杂量及煅烧时间对模拟污染物亚甲基蓝溶液降解率的影响。结果表明:在煅烧温度600 ℃、Co-Ti质量掺杂比(w(Co): w(Ti))0.03、煅烧时间2 h时,制备的掺杂Co光催化剂降解率达到89.0%,比未掺杂之前提高了32.4%。
  • 图  1  高炉渣及光催化剂的XRD图谱

    Figure  1.  XRD patterns of blast furnace slag and the photocatalysts

    图  2  煅烧温度对光催化剂降解效率的影响

    Figure  2.  Effect of calcination temperature on degradation efficiency of the photocatalyst

    图  3  掺杂比对光催化剂降解效率的影响

    Figure  3.  Influence of doping ratio on degradation efficiency of photocatalyst

    图  4  煅烧时间对光催化剂降解效率的影响

    Figure  4.  Effect of calcination time on degradation efficiency of photocatalyst

    表  1  高钛型高炉渣的主要成分

    Table  1.   Main compositions of high titanium blast furnace slag %

    TiO2Fe2O3SiO2MgOAl2O3CaOV2O5F
    23.162.6424.017.4713.4927.190.820.12
    下载: 导出CSV

    表  2  正交试验结果与分析

    Table  2.   Results and analysis of orthogonal tests

    试验号Aw(Co)∶
    w(Ti)
    B煅烧温
    度/℃
    空列C煅烧时
    间/h
    降解效
    率/%
    11(0.02)1(600)11(1)75.26
    21(0.02)2(700)22(2)70.53
    31(0.02)3(800)33(3)65.21
    42(0.03)1(600)23(3)79.22
    52(0.03)2(700)31(1)70.22
    62(0.03)3(800)12(2)79.20
    73(0.04)1(600)32(2)75.18
    83(0.04)2(700)13(3)60.28
    93(0.04)3(800)21(1)70.25
    k170.3376.5571.5871.91
    k276.2167.0173.3374.97
    k368.5771.5570.2068.24
    极差R7.649.543.136.73
    因素主→次BAC
    最优方案B1A2C2
    下载: 导出CSV
  • [1] Huo Hongying, Liu Guoqin, Zou Min, et al. Discussion for comprehensive utilization of Pangang high titanium blast furnace slag[J]. Rare Metal Materials and Engineering, 2010,39(S1):134−137. (霍红英, 刘国钦, 邹敏, 等. 攀钢高钛型高炉渣综合利用探讨[J]. 稀有金属材料与工程, 2010,39(S1):134−137.
    [2] (林婵. TiO2纳米材料的制备改性及其光催化性能研究[D]. 青岛: 中国海洋大学, 2014.)

    Lin Chan. Preparation, Modification of TiO2 nanomaterials and their photocatalytic performance study[D]. Qingdao: Ocean University of China, 2014.
    [3] (施丽丽. 含钛高炉渣物理化学特性的实验研究[D]. 贵阳: 贵州大学, 2009.)

    Shi Lili. Experimental study on physical chemistry characteristics of titanium-bearing blast furnace slag[D]. Guiyang: Guizhou University, 2009.
    [4] Yang Li, Yi Yue, Que Zaiqing, et al. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(10):1012−1020. doi: 10.1007/s12613-013-0828-y
    [5] Guo Yu, Jin Yujia, Wu Hongmei, et al. Preparation and photocatalytic properties of supported TiO2 photocatalytic material[J]. Spectroscopy and Spectral Analysis, 2015,(6):1677−1681. (郭宇, 金玉家, 吴红梅, 等. 负载型二氧化钛光催化材料的制备及其光催化性能研究[J]. 光谱学与光谱分析, 2015,(6):1677−1681. doi: 10.3964/j.issn.1000-0593(2015)06-1677-05
    [6] Yang He, Xue Xiangxin, Zuo Liang, et al. Photocatalytic degradation of blue with blast furnace slag containing titania[J]. The Chinese Journal of Process Engineering, 2004,(3):265−268. (杨合, 薛向欣, 左良, 等. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. 过程工程学报, 2004,(3):265−268. doi: 10.3321/j.issn:1009-606X.2004.03.014
    [7] Ma Xingguan, Ma Zhixiao, Yang He, et al. Experimental study on the degradation of the furfural waste water with titaniferous blast furmace slag[J]. Environmental Protection Science, 2009,35(5):15. (马兴冠, 马志孝, 杨合, 等. 含钛高炉渣光催化降解糠醛废水[J]. 环境保护科学, 2009,35(5):15. doi: 10.3969/j.issn.1004-6216.2009.05.005
    [8] Wang Hui, Xue Xiangxin, Yang He, et al. Study of preparation of V5+ doped titanium-bearing blast furnace slag and its antibacterial capability[J]. Iron Steel Vanadium Titanium, 2009,30(4):6−10. (王辉, 薛向欣, 杨合, 等. V5+掺杂含钛高炉渣光催化抗菌材料的制备及抗菌性能研究[J]. 钢铁钒钛, 2009,30(4):6−10.
    [9] Zhang Shiqiu, Wang Weiqing. Manganese nodilied Ti-bearing blast furnace slag type photocatalyst degrade Cr6+ in waste water[J]. Metal Mine, 2017,(5):181−184. (张士秋, 王维清. 锰改性含钛高炉渣光催化剂降解废水中的Cr6+[J]. 金属矿山, 2017,(5):181−184. doi: 10.3969/j.issn.1001-1250.2017.05.035
    [10] Zhou Mi, Yang He, Piao Erjun, et al. Effect of rare earth metal doping on photocatalytic performance of titania-bearing blast furnace slag[J]. Iron and Steel, 2010,45(10):90−94. (周密, 杨合, 卜二军, 等. 掺杂稀土金属对含钛高炉渣光催化性能影响[J]. 钢铁, 2010,45(10):90−94.
    [11] (中国国家标准化管理委员会, GB/T 23762—2009 光催化材料水溶液体系净化测试方法[S]. 北京: 中国标准出版社, 2010.)

    Standardization administration of China, GB/T 23762—2009 test method for purification of aqueous solution systems of photocatalytic materials[S]. Beijing: China Standard Press, 2010.
    [12] Li Qi, Han Lijuan, Liu Gang, et al. Synthesis, characterization and degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013,15(6):1073−1080. (李琪, 韩立娟, 刘刚, 等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013,15(6):1073−1080.
    [13] Fu Chunlin, Wei Xiwen. Recent advances in the crystalline phase transition of titania[J]. Materials Review, 1999,(3):3−5. (符春林, 魏锡文. 二氧化钛晶型转变研究进展[J]. 材料导报, 1999,(3):3−5.
    [14] (魏雨. 二氧化钛的制备、光催化性能及其形成机理研究[D]. 长春: 吉林大学, 2018.)

    Wei Yu. Study on preparation, photocatalytic properties and formation mechanism of TiO2[D]. Changchun: Jilin University, 2018.
    [15] Huihong Lü, Ning Li, Xingrong Wu, et al. A Novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible- light response[J]. Metallurgical and Materials Transactions: B, 2013,(44):1317−1321.
    [16] XiangJun Gong, Feng Jia, Rong Liu, et al. Study on preparation and photocatalytic activity of photocatalyst made from Ti-bearing blast furnace slag[J]. Applied Mechanics and Materials, 2014,(526):33−38.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  433
  • HTML全文浏览量:  104
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回