留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结烟气脱硫石膏CO/H2还原脱硫试验研究

左大文 巩磊 韦杰 邓波 邵兴 杨世山

左大文, 巩磊, 韦杰, 邓波, 邵兴, 杨世山. 烧结烟气脱硫石膏CO/H2还原脱硫试验研究[J]. 钢铁钒钛, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014
引用本文: 左大文, 巩磊, 韦杰, 邓波, 邵兴, 杨世山. 烧结烟气脱硫石膏CO/H2还原脱硫试验研究[J]. 钢铁钒钛, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014
Zuo Dawen, Gong Lei, Wei Jie, Deng Bo, Shao Xing, Yang Shishan. Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014
Citation: Zuo Dawen, Gong Lei, Wei Jie, Deng Bo, Shao Xing, Yang Shishan. Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 83-92. doi: 10.7513/j.issn.1004-7638.2021.01.014

烧结烟气脱硫石膏CO/H2还原脱硫试验研究

doi: 10.7513/j.issn.1004-7638.2021.01.014
详细信息
    作者简介:

    左大文(1994—),男,硕士研究生,主要从事炼铁工艺和冶金环保资源利用研究,E-mail:1591990313@qq.com;

    通讯作者:

    杨世山(1962—),男,硕士,副教授,主要从事炼铁工艺、铁水预处理和冶金资源综合利用研究,E-mail:yangshishan@ustb.edu.cn

  • 中图分类号: X757

Experimental studies on reduction desulfurization of FGD gypsum from iron ore sintering process using CO/H2

  • 摘要: 通过热力学软件Factsage7.3对CO/H2还原CaSO4进行热力学平衡计算。计算得到CO/H2还原CaSO4生成CaO和SO2的最佳理论条件为:反应温度1100 ℃以上、摩尔比n(CO)∶n(CaSO4)=n(H2)∶n(CaSO4)=1,过高或过低的还原剂摩尔比均不利于CaSO4的还原脱硫,同时温度越高越有利于CaSO4的CO / H2还原脱硫。根据Factsage7.3计算结果,以N2作为混合气体,在高温炉中进行了15 g烧结烟气脱硫石膏的CO/H2还原脱硫试验,考察CO/H2浓度、反应温度、反应时间、还原气体流量对脱硫石膏CO/H2还原脱硫的影响。结果表明:有利于脱硫石膏CO还原脱硫的最佳条件为CO浓度5%、反应温度1050 ℃、反应时间30 min、气体流量5 L/min;有利于脱硫石膏H2还原脱硫的最佳条件为H2浓度8%、反应温度1050 ℃、反应时间30 min、气体流量为5 L/min,且CO分解还原脱硫效果较H2还原脱硫的效果要好。试验发现在900 ℃以上时脱硫石膏有烧结现象发生,且随温度升高烧结程度更重,影响了CO/H2的还原脱硫效率。
  • 图  1  CO还原CaSO4反应优势区图

    Figure  1.  Predominance area diagram of CaSO4 reduction by CO

    图  2  CO还原CaSO4产物平衡组成

    Figure  2.  Equilibrium compositions of CaSO4 reduction by CO

    (a) n(CO)∶n(CaSO4)=0.5;(b) n(CO)∶n(CaSO4)=1;(c) n(CO)∶n(CaSO4)=2;(d) n(CO)∶n(CaSO4)=4

    图  3  H2还原CaSO4反应优势区图

    Figure  3.  Predominance area diagram of CaSO4 reduction by H2

    图  4  H2还原CaSO4产物平衡组成

    Figure  4.  Equilibrium compositions of CaSO4 reduction by H2

    (a) n(H2)∶n(CaSO4)=0.5;(b) n(H2)∶n(CaSO4)=1;(c) n(H2)∶n(CaSO4)=2;(d) n(H2)∶n(CaSO4)=4

    图  5  CO浓度对烧结烟气脱硫石膏CO还原脱硫的影响

    Figure  5.  Influence of CO concentration on reduction desulfurization of FGD gypsum

    图  6  反应温度对烧结烟气脱硫石膏CO还原脱硫的影响

    Figure  6.  Influence of reaction temperature on CO reduction desulfurization of FGD gypsum

    图  7  反应时间对烧结烟气脱硫石膏CO还原脱硫的影响

    Figure  7.  Influence of reaction time on CO reduction desulfurization of FGD gypsum

    图  8  气体流量对烧结烟气脱硫石膏CO还原脱硫的影响

    Figure  8.  Influence of gas flow rate on CO reduction desulfurization of FGD gypsum

    图  9  H2浓度对烧结烟气脱硫石膏还原脱硫的影响

    Figure  9.  Influence of H2 concentration on reduction desulfurization of FGD gypsum

    图  10  反应温度对烧结烟气脱硫石膏H2还原脱硫影响

    Figure  10.  Influence of reaction temperature on H2 reduction desulfurization of FGD gypsum

    图  11  反应时间对烧结烟气脱硫石膏H2还原脱硫的影响

    Figure  11.  Influence of reaction time on H2 reduction desulfurization of FGD gypsum

    图  12  气体流量对烧结烟气脱硫石膏H2还原脱硫影响

    Figure  12.  Influence of gas flow rate on H2 reduction desulfurization of FGD gypsum

    表  1  烧结烟气脱硫石膏化学成分

    Table  1.   Compositions of FGD gypsum %

    CaOSiO2MgOAl2O3TFeP(SO3)全S
    38.401.710.210.250.23≤0.003(51.75)20.70
    下载: 导出CSV
  • [1] Meng Lingjia, Ji Zhonghai, Chen Jin. Advance of the thermal decomposition of industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2017,36(2):626−633. (孟令佳, 吉忠海, 陈津. 工业副产石膏热分解脱硫的研究进展[J]. 化工进展, 2017,36(2):626−633.
    [2] Han Lingcui, Wang Yongchang. Development of chemical gypsum industry depends on the integration of energy saving and emission reduction with comprehensive utilization[J]. Phosphate & Compound Fertilizer, 2010,25(6):11−13, 21. (韩灵翠, 王永昌. 节能减排与综合利用并重是化学石膏产业发展方向[J]. 磷肥与复肥, 2010,25(6):11−13, 21. doi: 10.3969/j.issn.1007-6220.2010.06.003
    [3] Hu Zhenyu, Wang Jian, Zhang Xian, et al. Comprehensive utilization of phosphgypsum[J]. China Mine Engineering, 2004,33(4):41−44. (胡振玉, 王健, 张先, 等. 磷石膏的综合利用[J]. 中国矿山工程, 2004,33(4):41−44. doi: 10.3969/j.issn.1672-609X.2004.04.012
    [4] Richard R. West and Willard J. Sutton Thermography of gypsum[J]. Journal of the American Ceramic Society, 1954,37(5):221−224. doi: 10.1111/j.1151-2916.1954.tb14027.x
    [5] Miao Zhu, Yang Hairui, Wu Yuxin, et al. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds[J]. Industrial & Engineering Chemistry Research, 2012,51(15):5419−5423.
    [6] Xiao Haiping, Zhou Junhu, Cao Xinyu, et al. Experiments and model of the decomposition of CaSO4 under CO atmosphere[J]. Journal of Fuel Chemistry and Technology, 2005,33(2):150−154. (肖海平, 周俊虎, 曹欣玉, 等. CaSO4在CO气氛下的平行竞争反应试验与模型研究[J]. 燃料化学学报, 2005,33(2):150−154. doi: 10.3969/j.issn.0253-2409.2005.02.005
    [7] Su Hang, Zuo Haibin, Zhao Jun. Desulphurization of gypsum at high temperature[J]. Inorganic Chemicals Industry, 2019,51(7):68−73. (苏航, 左海滨, 赵骏. 石膏在高温下的分解脱硫研究[J]. 无机盐工业, 2019,51(7):68−73. doi: 10.11962/1006-4990.2018-0486
    [8] Zheng Shaocong, Ning Ping, Wang Fan, et al. Study on preparation of sulfur dioxide and lime by thermal decomposition of phosphogypsum[J]. Inorganic Chemicals Industry, 2013,45(9):45−47. (郑绍聪, 宁平, 汪帆, 等. 磷石膏热分解制备二氧化硫和氧化钙研究[J]. 无机盐工业, 2013,45(9):45−47. doi: 10.3969/j.issn.1006-4990.2013.09.015
    [9] Han Xiangyu, Chen Haokan, Li Baoqing. Thermogravimetric study on the reductive decomposition of calcium sulfate with pure H2 at high temperature[J]. Coal Conversion, 2000,23(2):72−75. (韩翔宇, 陈皓侃, 李保庆. CaSO4氢气下还原分解的热重研究[J]. 煤炭转化, 2000,23(2):72−75. doi: 10.3969/j.issn.1004-4248.2000.02.014
    [10] Chen Sheng, Liu Shaowen. Thermodynamic study on reductive decomposition of calcium sulfate with hydrogen[J]. Journal of Chemical Industry & Engineering, 2012,33(5):7−11. (陈升, 刘少文. 氢气还原分解硫酸钙的热力学研究[J]. 化学工业与工程技术, 2012,33(5):7−11.
    [11] Shao Xing, Gong Lei, Cao Yuexi, et al. Study on properties of FGD gypsum from iron sintering process[J]. Zhejiang Metallurgy, 2018,(1):28−32. (邵兴, 巩磊, 曹悦曦, 等. 烧结废气脱硫石膏性能探究[J]. 浙江冶金, 2018,(1):28−32.
    [12] Deng Bo, Gong Lei. Preliminary experimental study on decomposition and reduction of FGD gypsum from iron sintering process[J]. Zhejiang Metallurgy, 2019,(1):9−13. (邓波, 巩磊. 烧结废气脱硫石膏分解与还原试验初探[J]. 浙江冶金, 2019,(1):9−13.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  26
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回