中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟

朴荣勋 李轩 季颖

朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
引用本文: 朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
Citation: Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015

基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟

doi: 10.7513/j.issn.1004-7638.2021.01.015
基金项目: 攀枝花市科技局项目(2017CY-G-17);过程装备与控制工程四川省高校重点实验室开放基金科研项目(GK201919)
详细信息
    作者简介:

    朴荣勋(1983—),男,吉林延吉人,工学博士,通讯作者,主要从事钒钛资源综合利用及钒钛新材料新技术研究,E-mail:940310433@qq.com

  • 中图分类号: X757

Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings

  • 摘要: 利用提钒尾渣为主要原料,高硅粘土为辅料,石墨材料为改性剂,通过碳热还原-粉末冶金方法进行了高温显热蓄热材料的制备研究,分析石墨含量对显热蓄热材料的物相演变、比热容变化及导热变化规律。XRD物相分析表明,材料的主要物相包括石英、含高硅组分的钠长石、钛铁矿以及碳酸盐等物相,随着石墨含量的增加,石英相比率随之减少。比热容测试结果表明,比热容随石墨含量的增加先增大后减小,当石墨含量为3%时,比热容最高,在 500~700 ℃下的比热容值为820~3 180 J/(kg·K)。导热系数测试结果表明,当石墨含量小于5%时,蓄热材料导热系数变化不大,基本保持在0.75 W/(m·K)左右;当石墨含量大于5%时,导热系数呈现明显的上升趋势。为了进一步探索石墨对蓄热材料导热性能的影响,进行了模拟计算,利用非线性修正项代替分散体体积分数项,修正后的Maxwell模型可很好地预测试验结果。
  • 图  1  蓄热材料的典型宏观形貌

    Figure  1.  Typical macro-appearance of heat storage materials

    图  2  不同石墨含量蓄热材料的XRD图谱

    Figure  2.  XRD patterns of heat storage material with different graphite contents

    图  3  蓄热材料比热容随温度的变化

    Figure  3.  Specific heat capacity of thermal storage material with temperature variation

    图  4  不同石墨含量蓄热材料的导热系数

    Figure  4.  Thermal conductivity of heat storage material with different graphite contents

    图  5  不同导热系数模型的比较

    Figure  5.  Comparison of different thermal conductivity models

    表  1  提钒尾渣化学成分

    Table  1.   Chemical components of vanadium tailings %

    Na2OFe2O3SiO2TiO2MnOAl2O3MgOCaOV2O5Cr2O3其他
    9.640.117.011.06.55.43.12.41.61.12.2
    下载: 导出CSV

    表  2  提铁尾渣化学成分

    Table  2.   Chemical components of iron tailings %

    Fe2O3SiO2TiO2MgOAl2O3CaOCr2O3MnO
    2.2215.9416.942.983.94.01.511.23
    下载: 导出CSV

    表  3  粘土的化学成分

    Table  3.   Chemical components of clay %

    FeSiO2TiO2MgOAl2O3CaOMn
    2.6532.160.124.619.60.380.17
    下载: 导出CSV

    表  4  制备钒钛蓄热材料的材料配比

    Table  4.   Material proportioning in the preparation of vanadium-titanium heat storage material

    试验号提铁尾渣/g粘土/g石墨/g石墨含量/%
    S13300
    S22.912.910.183
    S32.852.850.35
    S42.792.790.427
    S52.72.70.610
    S62.552.550.915
    下载: 导出CSV

    表  5  修正Maxwell模型中的A和B值

    Table  5.   A and B values in modified Maxwell model

    类别AB
    前期研究系列[13]:尾渣+石墨基蓄热材料 −0.044 95 4.139 32
    本研究系列:尾渣+粘土+石墨基蓄热材料 0.130 188 −2.642 8
    下载: 导出CSV
  • [1] (劳新斌. 利用煤系高岭土原位合成α-Al2O3-SiCw系太阳能储热复相陶瓷材料的研究[D]. 武汉: 武汉理工大学, 2016.)

    Lao Xinbin.Utilization study of coal series kaolin in in-situ synthesis of α-Al2O3-SiCw composite ceramics for solar thermal storage[D].Wuhan: Wuhan University of Technology, 2016.
    [2] Tiskatine R, Oaddi R, Cadi R A E, et al. Suitability and characteristics of rocks for sensible heat storage in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017,169:245−257. doi: 10.1016/j.solmat.2017.05.033
    [3] Cabeza L F, Galindo E, Prieto C, et al. Key performance indicators in thermal energy storage: Survey and assessment[J]. Renewable Energy, 2015,83:820−827. doi: 10.1016/j.renene.2015.05.019
    [4] Geissbuhler L, Kolman M, Zanganeh G, et al. Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage[J]. Applied Thermal Engineering, 2016,101:657−668. doi: 10.1016/j.applthermaleng.2015.12.031
    [5] Leng Guanghui, Qiao Geng, Zhang Yelong, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017,6(5):1058−1075. (冷光辉, 谯耕, 张叶龙, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017,6(5):1058−1075. doi: 10.12028/j.issn.2095-4239.2017.00094
    [6] Kuravi S, Trahan J, Goswami D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy and Combustion Science, 2013,39(4):285−319. doi: 10.1016/j.pecs.2013.02.001
    [7] Ataer O E. Storage of Thermal Energy[C]//Energy Storage Systems.Edited by Gogus Y A. Encyclopedia of Life Support Systems (EOLSS). UK Oxford: Eolss Publishers, 2006.
    [8] Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. The Chinese Journal of Process Engineering, 2017,17(1):138−143. (李兰杰, 赵备备, 王海旭, 等. 提钒尾渣高效脱碱及配矿炼铁工艺[J]. 过程工程学报, 2017,17(1):138−143. doi: 10.12034/j.issn.1009-606X.216215
    [9] Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49−56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒尾渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49−56. doi: 10.7513/j.issn.1004-7638.2015.03.011
    [10] Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017,(6):103−108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017,(6):103−108.
    [11] Xiu Dapeng, Cao Shuliang, Xu Jianhua, et al. Application of ceramic solar plate heating system[J]. Shandong Science, 2013,26(2):72−77. (修大鹏, 曹树梁, 许建华, 等. 黑瓷复合陶瓷太阳板集热系统的应用研究[J]. 山东科学, 2013,26(2):72−77.
    [12] Kingery W D, Bowen H K, Uhlmann D R. Introduction to ceramics[M].Kendall Hunt Pub Co, 1976.
    [13] Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020,41(6):52−59. (朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020,41(6):52−59. doi: 10.7513/j.issn.1004-7638.2020.06.011
    [14] (李国伟. 利用提钒尾渣制备黑瓷及其太阳能集热应用[D]. 成都: 西华大学, 2015.)

    Li Guowei. The preparation and application of black porcelain solar heat utilization of vanadium titanium slag system[D].Chengdu: Xihua University, 2015.
    [15] (吴恩辉, 刘黔蜀, 黄平, 等. 提钒尾渣制备太阳能集热功能材料探索试验研究[C]//中国太阳能热利用行业年会暨"十三五"太阳能热利用发展论坛. 苏州: 2015.)

    Wu Enhui, Liu Qianshu, Huang Ping, et al. Experimental study on preparation of solar energy collection functional materials from vanadium tailings[C]//2015 Annual Meeting of China's Solar Thermal Utilization Industry and "13th Five Year Plan" Solar Thermal Utilization Development Forum. Suzhou: 2015.
    [16] Schön Jürgen H. Physical Properties of rocks:Fundamentals and principles of petrophysics,chapter 9 - thermal properties[J]. Developments in Petroleum Science, 2015,65:369−414.
    [17] Xu J, Gao B, Du H, et al. A statistical model for effective thermal conductivity of composite materials[J]. International Journal of Thermal Ences, 2016,104:348−356. doi: 10.1016/j.ijthermalsci.2015.12.023
    [18] Carson, James K. Thermal diffusivity and thermal conductivity of dispersed glass sphere composites over a range of volume fractions[J]. International Journal of Thermophysics, 2018,39(6):1−11.
    [19] Speight J G, Lange N A. Lange's Handbook of Che005 mistry 16th edition[M]. Newyork: McGraw-Hill, 2005.
    [20] Maxwell J C. A treatise on electricity and manetism[M]. Oxford: Clarendon Press, 1881.
    [21] Wang Licheng, Chang Ze, Bao Jiuwen. Prediction model for the thermal conductivity of concrete based on its composite structure[J]. Journal of Hydraulic Engineering, 2017,48(7):765−772. (王立成, 常泽, 鲍玖文. 基于多相复合材料的混凝土导热系数预测模型[J]. 水利学报, 2017,48(7):765−772.
    [22] Kumar S, Bhoopal R S, Sharma P K, et al. Non-linear effect of volume fraction of inclusions on the effective thermal conductivity of composite materials: A modified maxwell model[J]. Open Journal of Composite Materials, 2011,1(1):10−18. doi: 10.4236/ojcm.2011.11002
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  68
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回