留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟

朴荣勋 李轩 季颖

朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
引用本文: 朴荣勋, 李轩, 季颖. 基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟[J]. 钢铁钒钛, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015
Citation: Piao Rongxun, Li Xuan, Ji Ying. Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 93-99. doi: 10.7513/j.issn.1004-7638.2021.01.015

基于提钒尾渣的高温显热蓄热材料导热性能研究及模拟

doi: 10.7513/j.issn.1004-7638.2021.01.015
基金项目: 攀枝花市科技局项目(2017CY-G-17);过程装备与控制工程四川省高校重点实验室开放基金科研项目(GK201919)
详细信息
    作者简介:

    朴荣勋(1983—),男,吉林延吉人,工学博士,通讯作者,主要从事钒钛资源综合利用及钒钛新材料新技术研究,E-mail:940310433@qq.com

  • 中图分类号: X757

Research and modeling on thermal conductivity of high temperature heat storage material based on vanadium tailings

  • 摘要: 利用提钒尾渣为主要原料,高硅粘土为辅料,石墨材料为改性剂,通过碳热还原-粉末冶金方法进行了高温显热蓄热材料的制备研究,分析石墨含量对显热蓄热材料的物相演变、比热容变化及导热变化规律。XRD物相分析表明,材料的主要物相包括石英、含高硅组分的钠长石、钛铁矿以及碳酸盐等物相,随着石墨含量的增加,石英相比率随之减少。比热容测试结果表明,比热容随石墨含量的增加先增大后减小,当石墨含量为3%时,比热容最高,在 500~700 ℃下的比热容值为820~3 180 J/(kg·K)。导热系数测试结果表明,当石墨含量小于5%时,蓄热材料导热系数变化不大,基本保持在0.75 W/(m·K)左右;当石墨含量大于5%时,导热系数呈现明显的上升趋势。为了进一步探索石墨对蓄热材料导热性能的影响,进行了模拟计算,利用非线性修正项代替分散体体积分数项,修正后的Maxwell模型可很好地预测试验结果。
  • 图  1  蓄热材料的典型宏观形貌

    Figure  1.  Typical macro-appearance of heat storage materials

    图  2  不同石墨含量蓄热材料的XRD图谱

    Figure  2.  XRD patterns of heat storage material with different graphite contents

    图  3  蓄热材料比热容随温度的变化

    Figure  3.  Specific heat capacity of thermal storage material with temperature variation

    图  4  不同石墨含量蓄热材料的导热系数

    Figure  4.  Thermal conductivity of heat storage material with different graphite contents

    图  5  不同导热系数模型的比较

    Figure  5.  Comparison of different thermal conductivity models

    表  1  提钒尾渣化学成分

    Table  1.   Chemical components of vanadium tailings %

    Na2OFe2O3SiO2TiO2MnOAl2O3MgOCaOV2O5Cr2O3其他
    9.640.117.011.06.55.43.12.41.61.12.2
    下载: 导出CSV

    表  2  提铁尾渣化学成分

    Table  2.   Chemical components of iron tailings %

    Fe2O3SiO2TiO2MgOAl2O3CaOCr2O3MnO
    2.2215.9416.942.983.94.01.511.23
    下载: 导出CSV

    表  3  粘土的化学成分

    Table  3.   Chemical components of clay %

    FeSiO2TiO2MgOAl2O3CaOMn
    2.6532.160.124.619.60.380.17
    下载: 导出CSV

    表  4  制备钒钛蓄热材料的材料配比

    Table  4.   Material proportioning in the preparation of vanadium-titanium heat storage material

    试验号提铁尾渣/g粘土/g石墨/g石墨含量/%
    S13300
    S22.912.910.183
    S32.852.850.35
    S42.792.790.427
    S52.72.70.610
    S62.552.550.915
    下载: 导出CSV

    表  5  修正Maxwell模型中的A和B值

    Table  5.   A and B values in modified Maxwell model

    类别AB
    前期研究系列[13]:尾渣+石墨基蓄热材料 −0.044 95 4.139 32
    本研究系列:尾渣+粘土+石墨基蓄热材料 0.130 188 −2.642 8
    下载: 导出CSV
  • [1] (劳新斌. 利用煤系高岭土原位合成α-Al2O3-SiCw系太阳能储热复相陶瓷材料的研究[D]. 武汉: 武汉理工大学, 2016.)

    Lao Xinbin.Utilization study of coal series kaolin in in-situ synthesis of α-Al2O3-SiCw composite ceramics for solar thermal storage[D].Wuhan: Wuhan University of Technology, 2016.
    [2] Tiskatine R, Oaddi R, Cadi R A E, et al. Suitability and characteristics of rocks for sensible heat storage in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017,169:245−257. doi: 10.1016/j.solmat.2017.05.033
    [3] Cabeza L F, Galindo E, Prieto C, et al. Key performance indicators in thermal energy storage: Survey and assessment[J]. Renewable Energy, 2015,83:820−827. doi: 10.1016/j.renene.2015.05.019
    [4] Geissbuhler L, Kolman M, Zanganeh G, et al. Analysis of industrial-scale high-temperature combined sensible/latent thermal energy storage[J]. Applied Thermal Engineering, 2016,101:657−668. doi: 10.1016/j.applthermaleng.2015.12.031
    [5] Leng Guanghui, Qiao Geng, Zhang Yelong, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017,6(5):1058−1075. (冷光辉, 谯耕, 张叶龙, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017,6(5):1058−1075. doi: 10.12028/j.issn.2095-4239.2017.00094
    [6] Kuravi S, Trahan J, Goswami D Y, et al. Thermal energy storage technologies and systems for concentrating solar power plants[J]. Progress in Energy and Combustion Science, 2013,39(4):285−319. doi: 10.1016/j.pecs.2013.02.001
    [7] Ataer O E. Storage of Thermal Energy[C]//Energy Storage Systems.Edited by Gogus Y A. Encyclopedia of Life Support Systems (EOLSS). UK Oxford: Eolss Publishers, 2006.
    [8] Li Lanjie, Zhao Beibei, Wang Haixu, et al. The process of high efficiency dealkalization and ore blending in ironmaking of the extracted vanadium residue[J]. The Chinese Journal of Process Engineering, 2017,17(1):138−143. (李兰杰, 赵备备, 王海旭, 等. 提钒尾渣高效脱碱及配矿炼铁工艺[J]. 过程工程学报, 2017,17(1):138−143. doi: 10.12034/j.issn.1009-606X.216215
    [9] Meng Lipeng, Zhao Chu, Wang Shaona, et al. Improvement of vanadium extraction from extracted vanadium residue in China[J]. Iron Steel Vanadium Titanium, 2015,36(3):49−56. (孟利鹏, 赵楚, 王少娜, 等. 国内提钒尾渣再提钒技术研究进展[J]. 钢铁钒钛, 2015,36(3):49−56. doi: 10.7513/j.issn.1004-7638.2015.03.011
    [10] Hou Jing, Wu Enhui, Li Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017,(6):103−108. (侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017,(6):103−108.
    [11] Xiu Dapeng, Cao Shuliang, Xu Jianhua, et al. Application of ceramic solar plate heating system[J]. Shandong Science, 2013,26(2):72−77. (修大鹏, 曹树梁, 许建华, 等. 黑瓷复合陶瓷太阳板集热系统的应用研究[J]. 山东科学, 2013,26(2):72−77.
    [12] Kingery W D, Bowen H K, Uhlmann D R. Introduction to ceramics[M].Kendall Hunt Pub Co, 1976.
    [13] Piao Rongxun, Li Xuan, Li Guowei, et al. Preparation of high temperature sensible heat storage material from vanadium extraction tailings and graphite[J]. Iron Steel Vanadium Titanium, 2020,41(6):52−59. (朴荣勋, 李轩, 李国伟, 等. 利用提钒尾渣和石墨制备高温显热蓄热材料的研究[J]. 钢铁钒钛, 2020,41(6):52−59. doi: 10.7513/j.issn.1004-7638.2020.06.011
    [14] (李国伟. 利用提钒尾渣制备黑瓷及其太阳能集热应用[D]. 成都: 西华大学, 2015.)

    Li Guowei. The preparation and application of black porcelain solar heat utilization of vanadium titanium slag system[D].Chengdu: Xihua University, 2015.
    [15] (吴恩辉, 刘黔蜀, 黄平, 等. 提钒尾渣制备太阳能集热功能材料探索试验研究[C]//中国太阳能热利用行业年会暨"十三五"太阳能热利用发展论坛. 苏州: 2015.)

    Wu Enhui, Liu Qianshu, Huang Ping, et al. Experimental study on preparation of solar energy collection functional materials from vanadium tailings[C]//2015 Annual Meeting of China's Solar Thermal Utilization Industry and "13th Five Year Plan" Solar Thermal Utilization Development Forum. Suzhou: 2015.
    [16] Schön Jürgen H. Physical Properties of rocks:Fundamentals and principles of petrophysics,chapter 9 - thermal properties[J]. Developments in Petroleum Science, 2015,65:369−414.
    [17] Xu J, Gao B, Du H, et al. A statistical model for effective thermal conductivity of composite materials[J]. International Journal of Thermal Ences, 2016,104:348−356. doi: 10.1016/j.ijthermalsci.2015.12.023
    [18] Carson, James K. Thermal diffusivity and thermal conductivity of dispersed glass sphere composites over a range of volume fractions[J]. International Journal of Thermophysics, 2018,39(6):1−11.
    [19] Speight J G, Lange N A. Lange's Handbook of Che005 mistry 16th edition[M]. Newyork: McGraw-Hill, 2005.
    [20] Maxwell J C. A treatise on electricity and manetism[M]. Oxford: Clarendon Press, 1881.
    [21] Wang Licheng, Chang Ze, Bao Jiuwen. Prediction model for the thermal conductivity of concrete based on its composite structure[J]. Journal of Hydraulic Engineering, 2017,48(7):765−772. (王立成, 常泽, 鲍玖文. 基于多相复合材料的混凝土导热系数预测模型[J]. 水利学报, 2017,48(7):765−772.
    [22] Kumar S, Bhoopal R S, Sharma P K, et al. Non-linear effect of volume fraction of inclusions on the effective thermal conductivity of composite materials: A modified maxwell model[J]. Open Journal of Composite Materials, 2011,1(1):10−18. doi: 10.4236/ojcm.2011.11002
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  38
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回