留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响

李媛媛 甄维静 李永亮 闫志杰

李媛媛, 甄维静, 李永亮, 闫志杰. 钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响[J]. 钢铁钒钛, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019
引用本文: 李媛媛, 甄维静, 李永亮, 闫志杰. 钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响[J]. 钢铁钒钛, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019
Li Yuanyuan, Zhen Weijing, Li Yongliang, Yan Zhijie. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019
Citation: Li Yuanyuan, Zhen Weijing, Li Yongliang, Yan Zhijie. Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 119-125. doi: 10.7513/j.issn.1004-7638.2021.01.019

钙镁复合变质剂对冷轧高强钢组织遗传性及塑性影响

doi: 10.7513/j.issn.1004-7638.2021.01.019
基金项目: 中央引导地方科技发展专项资金项目(YDZX20191400004587)
详细信息
    作者简介:

    李媛媛(1985—),女,河北唐山人,本科,讲师,主要从事材料加工研究,电话:17703253939,E-mail:417171680@qq.com

    通讯作者:

    甄维静(1982—),女,河北唐山人,本科,讲师,主要从事钢的强化机理研究,电话:15369528838,E-mail:672535311@qq.com

  • 中图分类号: TF76

Effect of Ca-Mg compound modifier on microstructure and plasicity in cold-rolled high strength steel

  • 摘要: 利用光学显微镜(OM)、透射电镜(TEM)和电子背散射衍射(EBSD)等设备研究了Ca-Mg复合变质剂对冷轧超高强钢铸坯中TiN粒子析出的影响机制,并对显微组织在各工序的遗传性及塑性改善进行了系统对比。结果发现:添加变质剂以后,铸坯中TiN第二相粒子尺寸明显变小,数量增多,分布更弥散;添加改质剂后钢坯、热轧钢板中沿晶界铁素体减少,冷轧退火后显微组织变细;与未添加变质剂试验钢比,屈服强度和屈强比提高,材料折弯、扩孔率得到改善。变质剂的添加改变了钢液中TiN形核机制。弥散的TiN可以细化铸态组织,并通过遗传效应对热轧、冷轧连退组织产生影响,改善力学性能和成型性能。
  • 图  1  试验钢冷轧后的退火工艺

    Figure  1.  Heat treatment process for as cold-rolled experimental steels

    图  2  铸坯中第二相粒子形貌和化学成分

    Figure  2.  Morphology and chemical compositions of secondary particle in casting ingot

    图  3  变质剂对带钢显微组织的影响

    Figure  3.  Effect of modifier on microstructure of strip steel

    图  4  冷板晶粒取向成像及有效晶粒尺寸

    Figure  4.  Crystal orientation mapping (COM) and effective grain size of cold rolled sheet

    图  5  平衡态TiN析出行为

    Figure  5.  Precipitating behavior of TiN under equilibrium condition

    图  6  TiN析出示意

    Figure  6.  Schematic of TiN precipitation

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of the experimental steels %

    编号CSiMnSPNb+Ti+CrAltN改质剂
    1#≤0.35≤1.50≤2.500.015≤0.030≤0.200≥0.020≤0.007未添加
    2#≤0.35≤1.50≤2.500.015≤0.030≤0.200≥0.020≤0.007添加
    下载: 导出CSV

    表  2  变质剂对试验钢力学性能和成型性能的影响

    Table  2.   Effect of modifier on the mechanical properties and forming performance

    钢号力学性能成型性能
    抗拉强度/MPa屈服强度/MPa屈强比伸长率/%扩孔率/%180°折弯 d=0a
    1#热轧7234900.681325不开裂
    2#热轧7955640.711631不开裂
    1#冷轧9846830.692035开裂
    2#冷轧10007830.7825.555不开裂
    下载: 导出CSV
  • [1] Zhao Zhengzhi, Niu Feng, Tang Di,et al. Microstructure and properties of ultra-high strength cold-rolled dual phase steel[J]. Journal of University of Science and Technology Beijing, 2010,32(10):1287−1291. (赵征志, 牛枫, 唐荻, 等. 超高强度冷轧双相钢组织与性能[J]. 北京科技大学学报, 2010,32(10):1287−1291.
    [2] González R, García J O, Barbés M A, et al. Ultrafine grained HSLA steels for cold forming[J]. Journal of Iron & Steel Research, 2010,(10):53−59.
    [3] Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019,54(19):66−72.
    [4] Dai Qifeng, Song Renbo, Guan Xiaoxia. Microstructure and properties of ultra-high strength ferrite-matensite dual phase steel tested under dynamic tensile conditions[J]. Materials Engineering, 2013,(4):6−11. (代启锋, 宋仁伯, 关小霞. 超高强铁素体-马氏体双相钢在动态拉伸变形条件下组织和性能研究[J]. 材料工程, 2013,(4):6−11. doi: 10.3969/j.issn.1001-4381.2013.04.002
    [5] Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions[J]. Materials & Design, 2009,30(4):1310−1324.
    [6] Parilák L, Doják J. Influence of microstructure on micromechanisms of failure in HSLA steels[J]. International Journal of Pressure Vessels and Piping, 1993,55(2):353−360.
    [7] Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking & Steelmaking, 2013,38(8):577−583.
    [8] Abbasi S M, Morakabati M, Mahdavi R, et al. Effect of microalloying additions on the hot ductility of cast FeNi36[J]. Journal of Alloys and Compounds, 2015,639:602−610. doi: 10.1016/j.jallcom.2015.03.167
    [9] Jung J, Park J, Kim J, et al. Carbide precipitation kinetics in austenite of a Nb–Ti–V microalloyed steel[J]. Materials Science and Engineering: A, 2011,528(16−17):5529−5535. doi: 10.1016/j.msea.2011.03.086
    [10] Wang Z, Sun X, Yang Z, et al. Carbide precipitation in austenite of a Ti–Mo-containing low-carbon steel during stress relaxation[J]. Materials Science and Engineering: A, 2013,573:84−91. doi: 10.1016/j.msea.2013.02.056
    [11] Ghosh A, Ray A, Chakrabarti D, et al. Cleavage initiation in steel: Competition between large grains and large particles[J]. Materials Science and Engineering: A, 2013,561:126−135. doi: 10.1016/j.msea.2012.11.019
    [12] (李永亮. 700 MPa级高强度汽车大梁钢成分设计与组织控制研究[D]. 北京科技大学, 2017.)

    Li Yongliang. Study on composition design and microstructure control about 700 MPa grade high strength beam steel for vehicles[D]. Beijing: University of Science and Technology Beijing, 2017.
    [13] He B, Li J, Shi C B, et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process[J]. Metallurgical Research and Technology, 2018,115(5):256−261.
    [14] Lu Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.
    [15] Georgy V, Hideaki S. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe-10%Ni alloy[J]. ISIJ International, 2001,41(7):748−756. doi: 10.2355/isijinternational.41.748
    [16] (闫志杰, 王睿, 康燕, 等. 一种用于细化钢铁中碳化物的变质剂, 中国: CN107686872B[J].2019-12-10.)

    Yan Zhijie, Wang Rui, Kang Yan, et al. A modifier using for refining the carbide in steel, China: CN107686872B[J]. 2019-12-10.
    [17] Ge Yunzong, Yan Huicheng, Wang Jianjun, et al. Formation and control of CaS inclusion in gear steel 20CrMnTiH1[J]. Steelmaking, 2013,29(3):23−27. (葛允宗, 颜慧成, 王建军, 等. 20CrMnTiH1齿轮钢中CaS夹杂的形成与控制[J]. 炼钢, 2013,29(3):23−27.
    [18] Hiroki O, Hideaki S. Effects of N, C and Si contents and MgO on dispersion of TiN particles in Fe-1.5%Mn-0.05(0.15)%C alloy[J]. ISIJ International, 2007,47(2):197−206. doi: 10.2355/isijinternational.47.197
    [19] Kim H S, Chang C, Lee H. Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels[J]. Scripta Materialia, 2005,53(11):1253−1258. doi: 10.1016/j.scriptamat.2005.08.001
    [20] Kimiaki S, Hideadki S. Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10 mass Pct Ni alloy[J]. Metallurgical and Materials Transactions A, 2000,31(A):1213−1223.
    [21] Zhao Mingchun, Shan Yiyin, Xiao Furen, et al. Study on formation and strength & toughness behavior of acicular ferrite in p pipeline steel[J]. Materials Science & Technology, 2001,9(4):356−358. (赵明纯, 单以银, 肖福仁, 等. 管线钢中针状铁素体的形成及其强韧性的分析[J]. 材料科学与工艺, 2001,9(4):356−358. doi: 10.3969/j.issn.1005-0299.2001.04.005
    [22] Zheng Haoyong, Wang Meng, Wang Xiuxing, et al. Analysis of heterogeneous nucleation on rough surfaces based on Wenzel model[J]. Acta Phys. Sin., 2011,60(6):664021−664025. (郑浩勇, 王猛, 王修星, 等. 基于Wenzel模型的粗糙界面异质形核分析[J]. 物理学报, 2011,60(6):664021−664025.
    [23] (孙杰. 铝异质形核机理研究[D]. 上海: 上海大学, 2018.)

    Sun Jie. Heterogeneous nucleation mechanism of aluminum on substrates[D]. Shanghai: Shanghai University, 2018.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  30
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回