中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X80M直缝埋弧焊管用热轧钢板开发

翟冬雨 杜海军 吴俊平 姜金星 刘帅

翟冬雨, 杜海军, 吴俊平, 姜金星, 刘帅. X80M直缝埋弧焊管用热轧钢板开发[J]. 钢铁钒钛, 2021, 42(1): 131-138. doi: 10.7513/j.issn.1004-7638.2021.01.021
引用本文: 翟冬雨, 杜海军, 吴俊平, 姜金星, 刘帅. X80M直缝埋弧焊管用热轧钢板开发[J]. 钢铁钒钛, 2021, 42(1): 131-138. doi: 10.7513/j.issn.1004-7638.2021.01.021
Zhai Dongyu, Du Haijun, Wu Junping, Jiang Jinxing, Liu Shuai. Development of X80M hot-rolled steel plate for LSAW pipe[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 131-138. doi: 10.7513/j.issn.1004-7638.2021.01.021
Citation: Zhai Dongyu, Du Haijun, Wu Junping, Jiang Jinxing, Liu Shuai. Development of X80M hot-rolled steel plate for LSAW pipe[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 131-138. doi: 10.7513/j.issn.1004-7638.2021.01.021

X80M直缝埋弧焊管用热轧钢板开发

doi: 10.7513/j.issn.1004-7638.2021.01.021
基金项目: 国家重点研发计划(2017YFB0304900)
详细信息
    作者简介:

    翟冬雨(1978—),男,本科,高级工程师,主要工作方向:钢铁新产品开发,E-mail:zhaidongyu@njsteel.com.cn

  • 中图分类号: TF76,TG335.5

Development of X80M hot-rolled steel plate for LSAW pipe

  • 摘要: 为了满足中俄东线450×108 m3/a超大输量及−40 ℃极寒地区服役的国家重大管道工程建设用钢要求,结合南钢自身设备特点,试验开发了具有高强韧性的Φ1422 mm×32.1 mm直缝埋弧焊管用热轧钢板。通过冶金热力学温度控制及保护浇铸手段,得到了成分波动范围窄、低倍组织评级C0.5级的高洁净度铸坯,试验确定了TMCP轧制工艺,钢板力学性能检测富裕量充裕,少量先共析铁素体+针状铁素体+贝氏体+马奥岛的软/硬相复合组织,满足了X80M钢板高强韧性要求,强韧性指标符合管道技术规范要求,实现了中俄东线低温超大输量管道用钢的批量工业生产。
  • 图  1  成品磷、硫、氧、氮、氢控制

    Figure  1.  Phosphorus, sulfur, oxygen, nitrogen, hydrogen contents in finished steel product

    图  2  冶炼铸坯低倍评级

    Figure  2.  Rating of macro-structure of cast slab

    图  3  试制钢板的夹杂物检测结果

    Figure  3.  Test results of inclusions in trial steel plates

    图  4  不同终轧温度下试验钢的拉伸性能变化趋势

    Figure  4.  Tensile properties of test steel processed under different finish rolling temperatures

    图  5  试验钢在不同终轧温度下的显微组织 ×1 000

    Figure  5.  Microstructure of test steel processed at different finish rolling temperatures ×1 000

    图  6  试验钢在不同入水温度下的力学性能

    Figure  6.  Mechanical properties of test steel at different entry temperatures into water cooling section

    图  7  试验钢在不同入水温度下的显微组织

    Figure  7.  Microstructure of test steel at different entry temperatures into water cooling section

    图  8  试验钢在不同返红温度下的强度与DWTT

    Figure  8.  Test steel strength and DWTT at different end cooling temperatures

    图  9  X80M拉伸性能分布

    Figure  9.  Distribution of tensile performance of X80M steel plate

    图  10  X80M冲击性能分布

    Figure  10.  Distribution of impact performance of X80M steel plate

    图  11  X80M落锤性能分布

    Figure  11.  Distribution of Drop weight performance of X80M steel plate

    图  12  维氏硬度测试点位置

    Figure  12.  Vickers hardness test point location

    图  13  X80M钢板金相组织

    Figure  13.  Metallographic structure of X80M steel plate

    表  1  X80MΦ1422 mm×32.1 mm直缝埋弧焊管用热轧钢板拉伸性能试验要求

    Table  1.   Requirements for X80M Φ1 422 mm×32.1 mm hot-rolled steel plate for LSAW pipe

    钢级屈服强度/MPa抗拉强度/MPa最大屈强比(Rt0.5/Rm)最小伸长率(Af) /%
    最小最大最小最大
    X80 555 700 625 765 0.93 按API Spec 5L
    注:本要求为钢管拉伸性能要求。根据协商一致原则,由制造商负责对供应的钢板拉伸性能进行调整,但应保证制成钢管的拉伸性能符合直缝埋弧焊钢管技术条件的规定。
    下载: 导出CSV

    表  2  X80MΦ1422 mm×32.1 mm直缝埋弧焊管用热轧钢板夏比冲击试验要求

    Table  2.   Charpy impact test requirements for X80M Φ1422 mm×32.1 mm hot-rolled steel plate for LSAW pipe

    钢级试验温度/℃位置夏比冲击剪切面积(SA)/%夏比冲击功/J
    单个试样最小值三个试样最小平均值单个试样最小值三个试样最小平均值
    X80 −30 板宽1/4横向 70 85 160 210
    注:10 mm×10 mm×55 mm试样。
    下载: 导出CSV

    表  3  X80MΦ1 422 mm×32.1 mm直缝埋弧焊管用热轧钢板X80M坯料成分设计

    Table  3.   Alloying design for X80MΦ1 422 mm×32.1 mm hot-rolled steel plate for LSAW X80M billet %

    CSiMnPSNb+V+TiCa
    内控 0.040~0.060 0.20~0.30 1.60~1.70 ≤0.012 ≤0.002 0.055~0.080 0.0005~0.0040
    A1t Cr Ni Cu B N H Pcm
    内控 0.015~0.050 0.10~0.20 0.15~0.30 0.10~0.20 ≤0.0005 ≤0.0060 ≤0.0002 0.17~0.22
    下载: 导出CSV

    表  4  X80MΦ1 422 mm×32.1 mm直缝埋弧焊管用热轧钢板硬度(HV10)检测结果

    Table  4.   Hardness (HV10) test results of X80M Φ1 422 mm×32.1 mm hot rolled steel plate for LSAW pipe

    试样号厚度/mm厚度方向截面硬度(HV10)
    近上表单值心部单值近下表单值最大值
    试样132.1205203216208209207205211206216
    试样232.1234211229216211213212219218234
    试样332.1220215213221212220221219218221
    试样432.1239225229216220214217216211239
    下载: 导出CSV
  • [1] Zeng Y P, Zhu P Y, Tong K. Effect of microstructure on the low temperature toughness of high strength pipeline steels[J]. International Journal of Minerals, Metallurgy and Materials, 2014,22(3):254.
    [2] Shin S Y, Huang B, Lee S, et al. Correlation of microstructure and charpy impact properties in API X70 and X80 line-pipe steels[J]. Materials Scuence and Engineering: A, 2007,458(1−2):281. doi: 10.1016/j.msea.2006.12.097
    [3] Niu Yanlong, Liu Qingyou, Jia Shujun. Microstructure and impact toughness of X80 grade high strength low alloy pipeline steel[J]. Iron &Steel, 2019,54(2):67. (牛延龙, 刘清友, 贾书君. X80级高强低合金管线钢组织与冲击韧性[J]. 钢铁, 2019,54(2):67.
    [4] Du Wei, Li Helin, Wang Haitao, et al. Research status of high-performance oil and gas pipelines in China and abroad[J]. Oil & Gas Storage and Transportation, 2016,35(6):577−582. (杜伟, 李鹤林, 王海涛, 等. 国内外高性能油气输送管的研发现状[J]. 油气储运, 2016,35(6):577−582.
    [5] Zhang Kunfeng, Zhang Xingchang, Gao Zhaoliang, et al. Study on the distribution characteristics of environment and geological hazards along the west-east gas pipeline[J]. Industry and Technology Forum, 2009,8(4):117−128. (张昆锋, 张兴昌, 高照良, 等. 西气东输管道沿线环境及地质灾害分布特征研究[J]. 产业与科技论坛, 2009,8(4):117−128. doi: 10.3969/j.issn.1673-5641.2009.04.043
    [6] Wang Xinhua, Li Xiugang, Li Qiang, et al. Control of string shaped non-metallic inclusions of CaO-Al2O3 sysrem in X80 pipeline steel plates[J]. Acta Metall. Sin., 2013,49(5):553−561. (王新华, 李秀刚, 李强, 等. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013,49(5):553−561. doi: 10.3724/SP.J.1037.2012.00505
    [7] Li Pingquan. Failure accidents and typical cases of oil and gas transmission pipeline[J]. Welded Pipe and Tube, 2005,(4):76−84, 92. (李平全. 油气输送管道失效事故及典型案例[J]. 焊管, 2005,(4):76−84, 92. doi: 10.3969/j.issn.1001-3938.2005.04.025
    [8] Tong Ke, Xie Xuedong, Li Liang, et al. Failure cause and typical case analysis of bending pipe used in oil and gas transmission[J]. Petroleum Tubular Goods & Instruments, 2016,2(1):46−49. (仝珂, 谢学东, 李亮, 等. 油气输送用弯管失效原因及典型案例分析[J]. 石油管材与仪器, 2016,2(1):46−49. doi: 10.3969/j.issn.1004-9134.2016.01.014
    [9] Fang Wei, Zou Bin, Li Weiwei, et al. Separations and their contribution into the impact toughness of pipeline steels of strength class K65 (X80)[J]. Welded Pipe and Tube, 2018,41(2):65. (方伟, 邹斌, 李为卫, 等. K65(X80)管线钢断口分离及其对冲击韧性的影响[J]. 焊管, 2018,41(2):65.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  232
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-13
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回