留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变形温度及冷却速度对微合金化82B盘条组织和性能的影响

李峥杰 李志攀

李峥杰, 李志攀. 变形温度及冷却速度对微合金化82B盘条组织和性能的影响[J]. 钢铁钒钛, 2021, 42(1): 170-175. doi: 10.7513/j.issn.1004-7638.2021.01.028
引用本文: 李峥杰, 李志攀. 变形温度及冷却速度对微合金化82B盘条组织和性能的影响[J]. 钢铁钒钛, 2021, 42(1): 170-175. doi: 10.7513/j.issn.1004-7638.2021.01.028
Li Zhengjie, Li Zhipan. Effect of deformation temperature and cooling rate on microstructure and properties of microalloyed 82B wire rod[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 170-175. doi: 10.7513/j.issn.1004-7638.2021.01.028
Citation: Li Zhengjie, Li Zhipan. Effect of deformation temperature and cooling rate on microstructure and properties of microalloyed 82B wire rod[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 170-175. doi: 10.7513/j.issn.1004-7638.2021.01.028

变形温度及冷却速度对微合金化82B盘条组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2021.01.028
基金项目: 中央高校基本科研业务费专项资金资助项目(302102567211)。
详细信息
    作者简介:

    李峥杰(1984—),男,汉族,河南鹤壁人,硕士研究生,讲师,主要研究方向:汽车相关配套材料的设计及研发,0392-3221100,E-mail:489563130@qq.com

  • 中图分类号: TF76

Effect of deformation temperature and cooling rate on microstructure and properties of microalloyed 82B wire rod

  • 摘要: 利用热模拟仪、金相显微镜、万能试验机等手段对微合金化82B盘条的变形温度及冷却速度进行了研究分析,试验结果表明:较快的冷速会促进钒合金化试样中含钒第二相的析出,提高材料强度的同时降低其塑性,该合金化方式需控制钒含量;钒氮合金化是一种适合82B盘条的强化方式,但材料的钒和氮含量比例关系,以及与冷速的交互作用可显著影响材料的强韧性,需严格控制钢中钒氮配比;铬钒复合微合金化可显著提高82B盘条的强度和韧性,且不受冷速的强烈影响,是理想的微合金化方式,铬钒复合微合金化82B盘条组织均匀,未出现中心元素偏析,适宜终轧温度范围为900~940 ℃。
  • 图  1  微合金化82B盘条热模拟工艺

    Figure  1.  Thermal simulation of microalloyed 82B wire rod

    图  2  冷速对钒微合金化82B钢抗拉强度Rm和断面收缩率Z的影响

    Figure  2.  Effect of cold speed on tensile strength Rm and area reduction Z of vanadium microalloyed 82B steel

    图  3  冷速对钒氮微合金化82B钢抗拉强度Rm和断面收缩率Z的影响

    Figure  3.  Effect of cold speed on tensile strength Rm and area reduction Z of vanadium nitrogen microalloyed 82B steel

    图  4  冷速对含铬82B钢抗拉强度Rm和断面收缩率Z的影响

    Figure  4.  Influence of cooling rate on tensile strength Rm and area reduction Z of chromium containing 82B steel

    图  5  变形温度对钒氮微合金化8#试样拉伸性能的影响

    Figure  5.  The effect of deformation temperature on the tensile properties of vanadium and nitrogen microalloyed 8# samples

    图  6  8#试样经冷速1 ℃/s热模拟后的金相组织

    Figure  6.  Metallographic structure of 8# specimen after thermal simulation at 1 ℃/s

    图  7  微合金化82B热模拟920 ℃变形后以1 ℃/s冷却后的拉伸性能

    Figure  7.  Tensile properties of microalloyed 82B thermal simulation at 920 ℃after cooling at 1 ℃/s

    图  8  微合金化82B钢以1.0 ℃/s冷却后的金相组织

    Figure  8.  Microstructure of microalloyed 82B steel after cooling at 1.0 ℃/s

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of steelis %

    序号CMnSiVNCr备注
    1# 0.80 0.75 0.22 0.0074 0.0025 82B
    2# 0.83 0.73 0.26 0.044 0.0028 82B+0.044V
    3# 0.82 0.74 0.22 0.079 0.0026 82B+0.079V
    4# 0.81 0.74 0.28 0.14 0.0022 82B+0.14V
    5# 0.83 0.74 0.26 0.096 0.009 82B+0.096V、0.009N
    6# 0.83 0.74 0.26 0.095 0.013 82B+0.095V、0.013N
    7# 0.81 0.74 0.24 0.014 0.18 82B+0.18Cr
    8# 0.83 0.72 0.20 0.075 0.0037 0.19 82B+0.075V、0.19Cr
    下载: 导出CSV

    表  2  微合金化82B钢热模拟变形断口硬度

    Table  2.   Surface hardness of thermal simulated deformation fracture of microalloyed 82B steel

    变形温度/℃硬度(HRC)
    测量值平均值
    820 37.2, 37.9, 37.6, 37.3 37.5
    840 37.5, 36.9, 38.3, 38.1 37.7
    860 37.1, 37.6, 37.1, 38.5 37.6
    880 37.1, 37.4, 37.9, 36.8 37.3
    900 35.8, 36.9, 37.3, 35.3 36.3
    920 35.7, 36.6, 37.2, 36.6 36.5
    940 36.9, 36.3, 36.6, 36.9 36.7
    下载: 导出CSV
  • [1] Hu Bo, Guo Shanli, Zhang Changjing, et al. Optimization of controlled rolling and cooling process for recrystallization of high carbon wire rod SWRH82B[J]. Hot Working Process, 2014,(19):140−142. (胡波, 郭善莉, 张长静, 等. 高碳盘条SWRH82B再结晶型控制轧制与冷却工艺的优化研究[J]. 热加工工艺, 2014,(19):140−142.
    [2] Wang Bingxi, Ren Yuhui, Guo Dayong, et al. Production process and quality analysis of SWRH82B wire rod[J]. Metal Products, 2009,35(5):49−52. (王秉喜, 任玉辉, 郭大勇, 等. SWRH82B盘条生产工艺及质量分析[J]. 金属制品, 2009,35(5):49−52. doi: 10.3969/j.issn.1003-4226.2009.05.017
    [3] Li Zhengsong, Gao Changyi, Liu Lide, et al. Production practice of SWRH82B hot rolled wire rod[J]. Metal Products, 2016,42(3):35−37. (李正嵩, 高长益, 刘立德, 等. SWRH82B热轧线材生产实践[J]. 金属制品, 2016,42(3):35−37. doi: 10.3969/j.issn.1003-4226.2016.03.010
    [4] Yang Feng, Liang Yilong, Xiang Song, et al. Effect of heat treatment process on microstructure of SWRS82B wire rod[J]. Heat Treatment Process, 2012,41(18):173−176. (杨峰, 梁益龙, 向嵩, 等. 热处理工艺对SWRS82B盘条显微组织的影响[J]. 热加工工艺, 2012,41(18):173−176.
    [5] Ma Zhijun, Li Zilin, Sun Haoran, et al. Controlled cooling process and microstructure and properties of SWRH82B wire rod for steel strand[J]. Rolling, 2006,23(2):56−58. (马志军, 李子林, 孙浩然, 等. 钢绞线用SWRH82B盘条的控冷工艺及组织性能[J]. 轧钢, 2006,23(2):56−58. doi: 10.3969/j.issn.1003-9996.2006.02.018
    [6] Li Minna, Du Zhongze, Wang Qingjuan, et al. Application of microalloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Process, 2016,(1):6−10. (李敏娜, 杜忠泽, 王庆娟, 等. 微合金化及控制冷却在高碳钢盘条中的应用现状[J]. 热加工工艺, 2016,(1):6−10.
    [7] Wang Yongwei, Gui Meiwen, Zhou Yong, et al. Effect of V and N microalloying on the properties of 82B high carbon steel[J]. Journal of Material Heat Treatment, 2011,(1):84−88. (王勇围, 桂美文, 周勇, 等. V、N微合金化对高碳钢82B性能的影响[J]. 材料热处理学报, 2011,(1):84−88.
    [8] Shen Jinlong, Qin Zhiguang, Xia Yanhua, et al. Application of vanadium nitrogen alloy in high carbon steel wswrh82b[J]. Iron Steel Vanadium Titanium, 2009,30(4):21−26. (沈金龙, 覃之光, 夏艳花, 等. 钒氮合金在高碳钢WSWRH82B中的应用[J]. 钢铁钒钛, 2009,30(4):21−26. doi: 10.7513/j.issn.1004-7638.2009.04.005
    [9] Li Yueyun, Hu Lei, Wang Lei, et al. Development of high performance prestressed steel strand wire SWRH72BCr-1%[J]. Metal Heat Treatment, 2018,43(9):31−36. (李月云, 胡磊, 王雷, 等. 高性能预应力钢绞线盘条SWRH72BCr-1%的开发[J]. 金属热处理, 2018,43(9):31−36.
    [10] Hua Wei, Xu Zhen, Song Jinling, et al. Effect of controlled cooling on microstructure and properties of SWRH82B-1V high carbon steel wire rod[J]. Special Steel, 2010,(1):70−72. (华蔚, 徐震, 宋金玲, 等. 控制冷却对SWRH82B-1V高碳钢盘条组织和性能的影响[J]. 特殊钢, 2010,(1):70−72.
    [11] Fu Jun, Wang Fuming, Chai Guoqiang, et al. Dynamic continuous cooling structure transformation of 82B high carbon steel wire rod[J]. Metal Heat Treatment, 2010,35(8):5−8. (付军, 王福明, 柴国强, 等. 82B高碳钢盘条的动态连续冷却组织转变[J]. 金属热处理, 2010,35(8):5−8.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  199
  • HTML全文浏览量:  44
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回