中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y1Cr13不锈钢轧材劈头开裂原因分析

吴良平 孙晗 谢剑波 吴翔宇 付建勋

吴良平, 孙晗, 谢剑波, 吴翔宇, 付建勋. Y1Cr13不锈钢轧材劈头开裂原因分析[J]. 钢铁钒钛, 2021, 42(1): 176-183. doi: 10.7513/j.issn.1004-7638.2021.01.029
引用本文: 吴良平, 孙晗, 谢剑波, 吴翔宇, 付建勋. Y1Cr13不锈钢轧材劈头开裂原因分析[J]. 钢铁钒钛, 2021, 42(1): 176-183. doi: 10.7513/j.issn.1004-7638.2021.01.029
Wu Liangping, Sun Han, Xie Jianbo, Wu Xiangyu, Fu Jianxun. Analysis on split-head cracking of Y1Cr13 stainless rolled bar[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 176-183. doi: 10.7513/j.issn.1004-7638.2021.01.029
Citation: Wu Liangping, Sun Han, Xie Jianbo, Wu Xiangyu, Fu Jianxun. Analysis on split-head cracking of Y1Cr13 stainless rolled bar[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 176-183. doi: 10.7513/j.issn.1004-7638.2021.01.029

Y1Cr13不锈钢轧材劈头开裂原因分析

doi: 10.7513/j.issn.1004-7638.2021.01.029
基金项目: 国家自然科学基金(51874195&5167112)。
详细信息
    作者简介:

    吴良平(1994—),男,硕士,安徽广德人,研究方向:汽车用易切削钢研究开发,E-mail:WLPwlp@shu.edu.cn

    通讯作者:

    付建勋(1969—),男,教授,主要研究方向为高品质特殊钢的开发、钢铁冶炼与连铸技术,E-mail:fujianxun@shu.edu.cn

  • 中图分类号: TF76

Analysis on split-head cracking of Y1Cr13 stainless rolled bar

  • 摘要: 针对某厂生产的Y1Cr13不锈钢在轧制过程产生劈头开裂的问题,采用金相显微镜、扫描电子显微镜、小样电解等分析检测方法,从夹杂物微观形貌角度对钢劈头开裂样中硫化物的微观形貌特征进行了表征分析,并探究了Y1Cr13不锈钢轧制时劈头开裂形成的原因。结果表明:该不锈钢轧材存在大量长条状硫化物,硫化物长宽比较大,长宽比分布在3以内的夹杂物占比为65.4%,长宽比大于3的夹杂物占比为34.6%,硫化物的国标评级为:粗系4.5级,细系5.5级,德标评级为3-3级;钢中过多的热脆细长条状硫化锰和锰铁硫化物是劈头开裂的主要原因。采用镁、碲等新工艺可对硫化物形态进行改质,将其控制为球形或纺锤形,并提高硫化物硬度,轧制时不易变形;通过适当减少钢中的[S]含量以及提高钢中Mn/S等措施可减少钢中的(Mn,Fe)硫化物。
  • 图  1  劈头开裂样及取样示意

    Figure  1.  Physical model of split-head cracking of steel sample and sampling positions

    图  2  劈头裂纹扫描

    Figure  2.  Scanning photos showing appearances of split-head crack

    图  3  裂纹边端和延展部的夹杂物及能谱

    Figure  3.  Inclusions at the edge and extension of cracks and its energy spectrometry

    图  4  电解腐蚀后的裂纹内部三维形貌

    Figure  4.  The inner three-dimensional morphologies of the cracks after electrolytic corrosion

    图  5  裂纹内部的细长条状夹杂物及能谱

    Figure  5.  Slender long-strip inclusions inside the crack and its energy spectrometry

    图  6  A厂Y1Cr13钢的硫化物形貌

    Figure  6.  The morphologies of the sulfides in Y1Cr13 steel produced by factory A

    图  7  三厂试样中典型视场

    Figure  7.  Typical optical morphologies of specimens provided by three plants

    图  8  三厂Y1Cr13钢中硫化物长宽比对比

    Figure  8.  Comparison of the ratio of sulfides in Y1Cr13 steels provided by three plants

    图  9  劈头样中心处的夹杂物扫描

    Figure  9.  Scanning photos of inclusions at the center of the split head sample

    图  10  腐蚀后夹杂物三维形貌

    Figure  10.  Three dimensional morphologies of the inclusions after electrolytic corrosion

    图  11  劈头样中心处的细长条状夹杂物及能谱

    Figure  11.  Slender long-stripe inclusions at the center of split-head sample and its energy spectrometry

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of experimental steels %

    厂家CSiMnPSCrMoNi
    A0.130.541.150.0270.3112.890.04
    B0.1220.2290.9570.0260.35012.3000.105
    C0.1200.4301.1600.0180.27012.7900.260
    下载: 导出CSV

    表  2  三个厂硫化物评级对比

    Table  2.   Comparison of inclusions rating of samples provided by three plants

    厂家国标评级(GBT 10516—2005)德标评级
    A 粗系4.5级,细系5.5级 3-3级
    B 粗系3.0级,细系5.5级 2-3级
    C 粗系1.5级,细系5.5级 2-2级
    下载: 导出CSV

    表  3  图9中夹杂物原子百分比

    Table  3.   Atomic percentages of elements in inclusions in figure 9 %

    No.MnSFeNCrOAl
    4.07 4.63 9.01 2.28 42.15 37.86
    38.83 34.49 7.99 11.20 7.49
    36.58 28.08 17.13 11.19 7.01
    下载: 导出CSV
  • [1] Zhang Yu. Analysis on the causes of rolling cracking of Y1Cr13[J]. Special Steel Technology, 2013,(3):17−19. (张宇. Y1Cr13轧制开裂原因浅析[J]. 特钢技术, 2013,(3):17−19. doi: 10.3969/j.issn.1674-0971.2013.03.005
    [2] Fan Zhijin, Cheng Xiufeng. Crack analysis and process optimization of high sulfur stainless steel SUSY1Cr13 in hot working[J]. Special Steel, 1996,(5):42−44. (范植金, 程秀峰. 高硫不锈钢SUSY1Cr13热加工裂纹分析及其工艺优化[J]. 特殊钢, 1996,(5):42−44.
    [3] Ma Baoguo, Xu Songqian, Zhao Suwu, et al. Research on splitting head of BT303CuS free-cutting stainless steel rolling stock[J]. Journal of Northeastern University (Natural Science), 2010,31(3):381−384. (马宝国, 徐松乾, 赵肃武, 等. BT303CuS易切削不锈钢轧件劈头的研究[J]. 东北大学学报(自然科学版), 2010,31(3):381−384. doi: 10.3969/j.issn.1005-3026.2010.03.020
    [4] Wang Weining. Analysis of cracking causes of Y1Cr13 steel[J]. Special Steel Technology, 2010,16(4):23−26. (王维宁. Y1Cr13钢开裂原因浅析[J]. 特钢技术, 2010,16(4):23−26.
    [5] Hao Shifeng, You Xiaodong, He Ning. Analysis and process improvement of M7 steel rolling split[J]. Hebei Metallurgy, 2015,(8):61−63. (郝世风, 尤晓东, 何宁. M7钢轧制劈头分析及工艺改进[J]. 河北冶金, 2015,(8):61−63.
    [6] Zhang D, Shen P, Xie J B, et al. A method for observing tridimensional morphology of sulfides by non-aqueous solution electrolytic etching[J]. Journal of Iron and Steel Research International, 2019,26(3):275−284. doi: 10.1007/s42243-018-0142-z
    [7] Deng Xiangyang, Li Jian, Xie Jianbo, et al. Comparative analysis of steel quality for C70S6 expanding connecting rod at home and abroad[J]. Iron Steel Vanadium Titanium, 2018,39(1):148−154. (邓向阳, 李健, 谢剑波, 等. 国内外C70S6胀断连杆用钢质量对比分析[J]. 钢铁钒钛, 2018,39(1):148−154. doi: 10.7513/j.issn.1004-7638.2018.01.026
    [8] Chen Yu, Liu Hongliang, Zheng Zhong, et al. Development of QStE series automotive structural steel products of bengang[J]. Science and Technology and Enterprise, 2014,10:299. (陈宇, 刘宏亮, 郑中, 等. 本钢QStE系列汽车结构用钢产品的开发[J]. 科技与企业, 2014,10:299. doi: 10.3969/j.issn.1004-9207.2014.17.277
    [9] Yang Wen, Yang Xiaogang, Zhang Lifeng, et al. Review of MnS inclusion control in steel[J]. Steelmaking, 2013,29(6):71−78. (杨文, 杨小刚, 张立峰, 等. 钢中MnS夹杂物控制综述[J]. 炼钢, 2013,29(6):71−78. doi: 10.3969/j.issn.1002-1043.2013.06.017
    [10] Zou Changfei, Yang Jieming, Wei Xianyi, et al. Microstructure characteristics of point segregation zone in 25CrMo ingot Steel[J]. Iron and Steel, 2017,52(3):21−26. (邹长飞, 杨接明, 韦贤毅, 等. 25CrMo钢锭点状偏析区微观组织特点[J]. 钢铁, 2017,52(3):21−26.
    [11] Ma Yue, Pan Tao, Jiang Bo, et al. Study on the effect of S content on fracture toughness of high speed wheel steel[J]. Acta Metallurgica Sinica, 2011,47(8):978−983. (马跃, 潘涛, 江波, 等. S含量对高速车轮钢断裂韧性影响的研究[J]. 金属学报, 2011,47(8):978−983.
    [12] Liu Yangbo, Tong Qian, Sun Qisong, et al. Effect of notch, short crack and inclusion on fatigue strength of high strength steel[J]. Shanghai Metal, 2017,39(4):69−74. (柳洋波, 佟倩, 孙齐松, 等. 缺口、短裂纹以及夹杂物对高强钢疲劳强度的影响[J]. 上海金属, 2017,39(4):69−74. doi: 10.3969/j.issn.1001-7208.2017.04.014
    [13] Li Hongsheng, Gao Hui. The form of manganese sulfide in steel and its effect on steel properties[J]. Yizhong Technology, 2004,(4):26−28. (李洪生, 高辉. 钢中硫化锰的形态及对钢性能的影响[J]. 一重技术, 2004,(4):26−28. doi: 10.3969/j.issn.1673-3355.2004.04.011
    [14] Koseki T. Inclusion assisted microstructure control in C-Mn and low alloy steel welds[J]. Metals Science Technology, 2005,21(8):867−879. doi: 10.1179/174328405X51703
    [15] Liu Z. Nucleation of acicular ferrite on sulfide inclusion during rapid solidification of low carbon steel[J]. CAMP-ISIJ, 2006,19(4):743.
    [16] Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of magnesium on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019,31(4):361−367. (艾克南, 谢剑波, 曾志崎, 等. 镁对非调质钢中组织及硫化物的影响[J]. 钢铁研究学报, 2019,31(4):361−367.
    [17] Shen P, Yang QK, Zhang D, et al. The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel[J]. Metals, 2018,8(8):639−652. doi: 10.3390/met8080639
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  173
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回