留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海砂钒钛磁铁矿高效综合利用新工艺

张俊 许海川 王锋 严定鎏 徐洪军 沈朋飞

张俊, 许海川, 王锋, 严定鎏, 徐洪军, 沈朋飞. 海砂钒钛磁铁矿高效综合利用新工艺[J]. 钢铁钒钛, 2021, 42(2): 5-9. doi: 10.7513/j.issn.1004-7638.2021.02.002
引用本文: 张俊, 许海川, 王锋, 严定鎏, 徐洪军, 沈朋飞. 海砂钒钛磁铁矿高效综合利用新工艺[J]. 钢铁钒钛, 2021, 42(2): 5-9. doi: 10.7513/j.issn.1004-7638.2021.02.002
Zhang Jun, Xu Haichuan, Wang Feng, Yan Dinliu, Xu Hongjun, Shen Pengfei. New process for utilization of sea sand vanadium-bearing titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 5-9. doi: 10.7513/j.issn.1004-7638.2021.02.002
Citation: Zhang Jun, Xu Haichuan, Wang Feng, Yan Dinliu, Xu Hongjun, Shen Pengfei. New process for utilization of sea sand vanadium-bearing titanomagnetite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 5-9. doi: 10.7513/j.issn.1004-7638.2021.02.002

海砂钒钛磁铁矿高效综合利用新工艺

doi: 10.7513/j.issn.1004-7638.2021.02.002
基金项目: 国家重点研发计划(2018YFC1900500,2018YFC1900601)
详细信息
    作者简介:

    张俊(1984—),男,湖北仙桃人,高级工程师,博士,主要从事非高炉炼铁及资源综合利用的研究,电话:010-62182520,E-mail:zjxt424@163.com。

  • 中图分类号: TF55, TF823

New process for utilization of sea sand vanadium-bearing titanomagnetite

  • 摘要: 为提高海砂钒钛磁铁矿的综合利用效率,降低处理能耗,提出了基于转底炉直接还原-电炉熔分流程的活化还原处理方法,并采用化学分析方法考察了铁、钒、钛的提取规律,优化了工艺参数,提出了改善电炉熔炼效率的措施。活化还原-电炉熔分方法可有效提高海砂钒钛磁铁矿的还原和熔分效率,并促进铁水的脱硫过程,活化还原温度控制在1150~1200 ℃、电炉熔分温度控制在1450 ℃时效果最佳。活化还原为电炉熔分与吹氧提钒相结合创造了条件,可显著降低熔分电耗、提高钒的提取效率,并简化炼钢流程。新的处理流程下熔分钛渣的活性较高,在体积浓度高于15%的稀硫酸中钛的浸出率可达95%,避免了传统硫酸法提钛过程的废酸排放。
  • 图  1  还原球团的金属化率

    Figure  1.  Metallization ratio of reduced samples

    图  2  1250 ℃活化还原后试样

    Figure  2.  Activated reduction sample at 1250 ℃

    图  3  不同熔分条件下粒铁的收得率

    Figure  3.  Yield of iron nugget at different smelting-separation conditions

    图  4  不同熔分条件下的粒铁图片

    Figure  4.  Pictures of iron nuggets under different smelting-separation conditions

    图  5  活化还原钛渣在稀酸中的浸出率

    Figure  5.  Leaching ratio of Ti-bearing slag after activated reduction in dilute acid

    表  1  海砂钒钛磁铁矿的化学成分

    Table  1.   Chemical compositions of sea sand vanadium titanomagnetite %

    TFeFeOFe2O3TiO2V2O5SiO2CaOMgOAl2O3KNaCl
    5621.855610.670.764.290.723.184.12<0.1<0.1<0.05
    下载: 导出CSV

    表  2  无烟煤粉化学组成

    Table  2.   Chemical compositions of pulverized anthracite %

    固定碳挥发分灰分S水分
    74.535.1617.860.442.45
    下载: 导出CSV

    表  3  原料的粒度组成

    Table  3.   Particle size distribution of raw materials

    粒度/目(μm)含量/%
    海砂钒钛磁铁矿无烟煤粉
    >35(500)0.43.78
    35~50(500~297)0.364.53
    50~100(297~147)26.4565. 6
    100~200(147~74)69.0727.3
    <200(74)1.720.78
    下载: 导出CSV

    表  4  含碳复合球团物料配比情况

    Table  4.   Mass fractions of carbon composite pellets %

    试样碳酸钠海砂矿煤粉
    107921
    2236116
    下载: 导出CSV

    表  5  不同条件下的粒铁成分

    Table  5.   Chemical compositions of iron nuggets under different conditions

    试样熔分温度/℃V/%C/%S/%
    117000.325.280.066
    214500.684.870.012
    下载: 导出CSV
  • [1] Ren Qianqian, Hao Suju, Jiang Wufeng, et al. Study of comprehensive utilization on Ti-bearing blast furnace slag[J]. Applied Mechanics and Materials, 2014,488-489:141−144. doi: 10.4028/www.scientific.net/AMM.488-489.141
    [2] Liu Mingpei. Analysis of vanadium distribution regularity in Panzhihua vanadium-titanium magnetite mine[J]. Mining Engineering, 2009,7(5):9−12. (刘明培. 浅谈攀枝花钒钛磁铁矿钒的分布规律[J]. 矿业工程, 2009,7(5):9−12. doi: 10.3969/j.issn.1671-8550.2009.05.004
    [3] Han Zhibiao, Chang Fuzeng. Material problem and solutions about further development of titanium industry in China[J]. Titanium Industry Progress, 2012,29(1):5−8. (韩志彪, 常福增. 中国钛工业发展的原料问题及对策[J]. 钛工业进展, 2012,29(1):5−8. doi: 10.3969/j.issn.1009-9964.2012.01.002
    [4] Zhang Jun, Dai Xiaotian, Yan Dingliu, et al. Carbothermal sodium reduction process of vanadium-bearing titanomagnetite[J]. Iron and Steel, 2016,51(10):6−9. (张俊, 戴晓天, 严定鎏, 等. 钒钛磁铁矿碳热钠化还原工艺[J]. 钢铁, 2016,51(10):6−9.
    [5] Chen Qianye, Zhang Jun, Cheng Xiangkui, et al. Study on carbothermal sodium reduction process of vanadium-titanium magnetite concentrate[J]. Iron Steel Vanadium Titanium, 2017,38(2):11−15. (陈乾业, 张俊, 程相魁, 等. 钒钛磁铁精矿低温综合利用新工艺[J]. 钢铁钒钛, 2017,38(2):11−15. doi: 10.7513/j.issn.1004-7638.2017.02.002
    [6] Zhang Y M, Yi L Y, Wang L N, et al. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification–direct reduction coupled process[J]. International Journal of Minerals, Metallurgy and Materials, 2017,24(5):504−511. doi: 10.1007/s12613-017-1431-4
    [7] Zhang Y M, Wang L N, Chen D S, et al. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite[J]. International Journal of Minerals, Metallurgy and Materials, 2018,25(2):131−144. doi: 10.1007/s12613-018-1556-0
    [8] Wu X, Chen D S, Wang L N, et al. Study on one-step coal-based direct reduction and melting of vanadium titanium magnetite concentrate[J]. Nonferrous Metals(Extractive Metallurgy), 2019,(2):15−20.
    [9] Shi L Y, Zhen Y L, Chen D S, et al. Carbothermic reduction of vanadium-titanium magnetite in molten NaOH[J]. ISIJ International, 2018,58(4):627−632. doi: 10.2355/isijinternational.ISIJINT-2017-515
    [10] Chen Ronggui, Wang Xuewen, Shou Liting. Study on extraction of vanadium by oxidation followed by sodium[J]. Iron Steel Vanadium Titanium, 1985,6(5):32−35. (陈荣贵, 王学文, 寿煜庭. 先氧化后钠化提钒工艺的研究[J]. 钢铁钒钛, 1985,6(5):32−35.
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  86
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回