留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N235从黏土钒矿酸浸液中萃钒的数学建模与分析

唐悦 叶国华 胡渝杰 陈子杨 陶媛媛

唐悦, 叶国华, 胡渝杰, 陈子杨, 陶媛媛. N235从黏土钒矿酸浸液中萃钒的数学建模与分析[J]. 钢铁钒钛, 2021, 42(2): 28-35. doi: 10.7513/j.issn.1004-7638.2021.02.006
引用本文: 唐悦, 叶国华, 胡渝杰, 陈子杨, 陶媛媛. N235从黏土钒矿酸浸液中萃钒的数学建模与分析[J]. 钢铁钒钛, 2021, 42(2): 28-35. doi: 10.7513/j.issn.1004-7638.2021.02.006
Tang Yue, Ye Guohua, Hu Yujie, Chen Ziyang, Tao Yuanyuan. Mathematical modeling and analysis of vanadium extraction from acid leaching solution of clay vanadium ore with N235[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 28-35. doi: 10.7513/j.issn.1004-7638.2021.02.006
Citation: Tang Yue, Ye Guohua, Hu Yujie, Chen Ziyang, Tao Yuanyuan. Mathematical modeling and analysis of vanadium extraction from acid leaching solution of clay vanadium ore with N235[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 28-35. doi: 10.7513/j.issn.1004-7638.2021.02.006

N235从黏土钒矿酸浸液中萃钒的数学建模与分析

doi: 10.7513/j.issn.1004-7638.2021.02.006
基金项目: 国家自然科学基金项目(51964028,51304090)
详细信息
    作者简介:

    唐悦(1997—),女,重庆合川人,硕士研究生,主要研究方向:钒钛提取,E-mail:tangyue085@163.com

    通讯作者:

    叶国华(1981—),男,博士,副教授,E-mail:ghye581@163.com

  • 中图分类号: TF841.3

Mathematical modeling and analysis of vanadium extraction from acid leaching solution of clay vanadium ore with N235

  • 摘要: 以N235从黏土钒矿酸浸液中提钒的条件试验为基础,主要研究溶剂萃取过程中影响萃取率的因素,确定了pH、萃取剂浓度、相比对萃取率的影响,而后运用响应曲面法确立了三个因素之间的交互效应,并且运用热力学、溶液化学分析了交互作用产生的原因,指出萃取体系中pH与硫元素会极大地影响溶液中的含钒组分,进而影响萃取率,同样含钒组分的变化也会影响萃取效率。总之,萃取体系产生交互作用的核心机理为pH变化引起溶液组分的变化以及萃取剂面对不同离子时所表现的差异性。
  • 图  1  多因素条件试验结果

    Figure  1.  Multi-factor condition test results

    图  2  萃取率模型预测与试验值对比

    Figure  2.  Comparison of extraction rate model prediction and test values

    图  3  S-V-H2O溶液组分示意

    (注:图中[H2VO4] [H3V2O7] [HVO42−][VO43−]对应对数坐标,即右坐标)

    Figure  3.  S-V-H2O solution compositions diagram

    图  4  N235-TBP协同萃取

    Figure  4.  N235-TBP collaborative extraction

    图  5  各因素交互作用对萃取率影响的响应面与等高线

    (a) pH-A/O交互作用;(b) 浓度-A/O交互作用;(c)浓度-pH交互作用

    Figure  5.  Response surface and contour lines of the interaction of various factors on the extraction rate

    图  6  S-Fe-H2O溶液组分示意

    (注:图中[Fe(OH)3] [Fe(SO4)2] [Fe(OH)2+][Fe(OH)2+]对应对数坐标,即右坐标)

    Figure  6.  S-Fe-H2O solution compositions diagram

    表  1  浸出液化学成分分析

    Table  1.   Chemical compositions of leachate g/L

    V2O5FeAl2O3SiO2MgOCaONaMnPCrAs
    9.386.5616.57<0.012.030.0960.0443.970.970.42<0.1
    下载: 导出CSV

    表  2  条件优化Box-Behnken试验因素与水平

    Table  2.   Condition optimization Box-Behnken test factors and levels

    水平(A)萃取剂浓度/%(B)pH(C)相比(A/O)
    −1101.63
    0151.82
    1202.01
    下载: 导出CSV

    表  3  三因素条件优化Box-Behnken试验因素与水平

    Table  3.   Three-factor condition optimization Box-Behnken test factors and levels

    编号因素萃取率/%
    萃取剂浓度/%pH相比(A/O)
    1 10 1.6 2.0 65.12
    2 20 1.6 2.0 76.95
    3 10 2.0 2.0 85.32
    4 20 2.0 2.0 84.22
    5 10 1.8 1.0 91.58
    6 20 1.8 1.0 88.31
    7 10 1.8 3.0 79.75
    8 20 1.8 3.0 91.8
    9 15 1.6 1.0 72.1
    10 15 2.0 1.0 89.97
    11 15 1.6 3.0 71.87
    12 15 2.0 3.0 82.85
    13 15 1.8 2.0 91.85
    14 15 1.8 2.0 91.9
    15 15 1.8 2.0 92.35
    16 15 1.8 2.0 92.03
    17 15 1.8 2.0 91.01
    下载: 导出CSV

    表  4  响应面试验结果方差分析

    Table  4.   Analysis of variance of response surface test results

    方差来源平方和自由度均方差F 值P值显著性
    模型 1187.05 9 131.89 506.19 < 0.0001 **
    A 47.58 1 47.58 182.6 < 0.0001 **
    B 396.49 1 396.49 1521.67 < 0.0001 **
    C 30.77 1 30.77 118.1 < 0.0001 **
    AB 41.8 1 41.8 160.41 < 0.0001 **
    AC 58.68 1 58.68 225.19 < 0.0001 **
    BC 11.87 1 11.87 45.55 0.0003 **
    A2 29.16 1 29.16 111.9 < 0.0001 **
    B2 537.07 1 537.07 2061.18 < 0.0001 **
    C2 7.52 1 7.52 28.86 0.001 **
    残差 1.82 7 0.26
    失拟性 0.84 3 0.28 1.13 0.4377
    纯误差 0.99 4 0.25
    总差 1188.88 16
    R2Adj S/N=
    注:“*”表示对结果影响显著(P<0.05);“**”表示对结果影响极显著(P<0.01)。
    下载: 导出CSV

    表  5  各因素影响机理分析

    Table  5.   Analysis of the influence mechanism of various factors

    编号方程式$ \mathrm{l}\mathrm{g}{K}^{0} $
    (1)  $ {\text{VO}}_{4}^{3-} $+4H+=$ {\text{VO}}_{\text{2}}^{\text{+}} $+2H2O 24.7
    (2)  $ {\text{VO}}_{4}^{3-} $+H+=${\rm{HVO}}_4^{2 - } $ 11.54
    (3)  $ {\text{VO}}_{4}^{3-} $+2H+=${{\rm{H}}_2}{\rm{VO}}_4^ - $ 21.1
    (4)  2$ {\text{VO}}_{4}^{3-} $+5H+=$ {{\rm{H}}_3}{{\rm{V}}_2}{\rm{O}}_7^ - $ 46.45
    (5)  $ {\text{VO}}_{4}^{3-} $+4H++$ \mathrm{S}{\mathrm{O}}_{4}^{2-} $=VO2$ \mathrm{S}{\mathrm{O}}_{4}^{-} $+2H2O 29.37
    (6)  VO++H+=V(OH)2+ −1.83
    (7)  V(OH)2++H+=H2O+V3+ 2.96
    (8) 4$ {\text{VO}}_{4}^{3-} $+8H+=V4O124− 95.11
    (9) 10$ {\text{VO}}_{4}^{3-} $+25H+=HV10O285−+12H2O 270.86
    (10) 10$ {\text{VO}}_{4}^{3-} $+26H+=HV10O284−+12H2O 274.49
    (11)  Fe3++OH=Fe(OH)3+ 11.89
    (12)  Fe3++2OH=$ \text{Fe(OH}{\text{)}}_{2}^{\text{+}} $ 23.62
    (13)  Fe3++2OH=$ \text{Fe(OH}{\text{)}}_{2}^{\text{+}} $ 35.3
    (14)  Fe3++$ \mathrm{S}{\mathrm{O}}_{4}^{2-} $=$ \mathrm{F}\mathrm{e}\text{S}{\text{O}}_{4}^{+} $ 2.03
    (15)  Fe3++2$ \mathrm{S}{\mathrm{O}}_{4}^{2-} $=$ \mathrm{F}\mathrm{e}(\text{S}{\text{O}}_{\text{4}}{)}_{2}^{-} $ 2.98
    (16)  H+$ \mathrm{H}\mathrm{S}{\mathrm{O}}_{4}^{-} $=H2SO4 −11.6
    (17)  H+$ \mathrm{S}{\mathrm{O}}_{4}^{2-} $=$ \mathrm{H}\mathrm{S}{\mathrm{O}}_{4}^{-} $ 1.96
    (18)  H++OH=H2O 14
    下载: 导出CSV
  • [1] Ye Guohua, Hu Yibo, Tong Xiong, et al. Extraction of vanadium from direct acid leaching solution of clay vanadium ore using solvent extraction with N235[J]. Hydrometallurgy, 2018,177:27−33. doi: 10.1016/j.hydromet.2018.02.004
    [2] Wen Jiawei, Ning Pengge, Cao Hongbin, et al. Modeling of liquid-liquid extraction of vanadium with primary amine N1923 in H2SO4 medium[J]. Hydrometallurgy, 2018,177:57−65. doi: 10.1016/j.hydromet.2018.02.013
    [3] Jing Xiaohua, Ning Pengge, Cao Hongbin, et al. Separation of V(Ⅴ) and Cr(Ⅵ) in leaching solution using annular centrifugal contactors[J]. Chemical Engineering Journal, 2017,315:373−381. doi: 10.1016/j.cej.2017.01.014
    [4] Hu J S, Zou D, Chen J, et al. A novel synergistic extraction system for the recovery of scandium (III) by Cyanex272 and Cyanex923 in sulfuric acid medium[J]. Separation and Purification Technology, 2020,233(15):59−77.
    [5] Kuang S T, Zhang Z F, Li Y L, et al. Synergistic extraction and separation of rare earths from chloride medium by the mixture of HEHAPP and D2EHPA[J]. Hydrometallurgy, 2017,174:78−83. doi: 10.1016/j.hydromet.2017.09.011
    [6] Zhang Y, Zhang T G, Lü G Z, et al. Synergistic extraction of vanadium(IV) in sulfuric acid media using a mixture of D2EHPA and EHEHPA[J]. Hydrometallurgy, 2016,166:87−93. doi: 10.1016/j.hydromet.2016.09.003
    [7] Zhang Ting'an, Mou Wangzhong, Dou Zhihe, et al. Potential—pH diagrams for V-Fe-H2O system during oxygen pressure acid leaching of vanadium-bearing converter slags[J]. Chinese Journal of Nonferrous Metals, 2011,21(11):2936−2945. (张廷安, 牟望重, 豆志河, 等. 转炉钒渣氧压酸浸过程V-Fe-H2O系的电位-pH图[J]. 中国有色金属学报, 2011,21(11):2936−2945.
    [8] (杨显万. 高温水溶液热力学数据计算手册[M]. 北京: 冶金工业出版社, 1983: 523-674.)

    Yang Xianwan. Handbook of thermodynamic data in aqueous solutions at high temperature[M]. Beijing: Metallurgical Industry Press, 1983: 523-674.
    [9] (伊赫桑·巴伦. 纯物质热化学数据手册[M]. 程乃良, 牛四通, 徐桂英, 译. 北京: 科学出版社, 2003: 716-726.)

    Barin I. Thermochemical data of pure substances[M]. Cheng Nailiang, Niu Sitong, Xu Guiying, transl. Beijing: Science Press, 2003: 716-726.
    [10] Chen B F, Huang S, Liu B, et al. Thermodynamic analysis for separation of vanadium and chromium in V(IV)-Cr(III)-H2O system[J]. Transactions of Nonferrous Metals Society of China, 2018,28(3):196.
    [11] Liu Jingwen, Yang Zhengfei, Zhou Peng, et al. V(Ⅴ)-Fe(Ⅲ)-S(Ⅵ)-H2O thermodynamic study and separation theory of ferrovanadium[J]. Chinese Journal of Nonferrous Metals, 2020,30(4):912−919. (刘景文, 阳征斐, 周鹏, 等. V(Ⅴ)-Fe(Ⅲ)-S(Ⅵ)-H2O系热力学研究与钒铁分离方法理论[J]. 中国有色金属学报, 2020,30(4):912−919. doi: 10.11817/j.ysxb.1004.0609.2020-35755
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  32
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回