留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛金属冶炼的生产成本以及新型钛冶金工艺的可能性

朱鸿民 肖九三 焦树强 卢鑫

朱鸿民, 肖九三, 焦树强, 卢鑫. 钛金属冶炼的生产成本以及新型钛冶金工艺的可能性[J]. 钢铁钒钛, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
引用本文: 朱鸿民, 肖九三, 焦树强, 卢鑫. 钛金属冶炼的生产成本以及新型钛冶金工艺的可能性[J]. 钢铁钒钛, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
Zhu Hongmin, Xiao Jiusan, Jiao Shuqiang, Lu Xin. Production cost of current titanium metallurgical process and possibility of new alternative process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
Citation: Zhu Hongmin, Xiao Jiusan, Jiao Shuqiang, Lu Xin. Production cost of current titanium metallurgical process and possibility of new alternative process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002

钛金属冶炼的生产成本以及新型钛冶金工艺的可能性

doi: 10.7513/j.issn.1004-7638.2021.03.002
详细信息
  • 中图分类号: TF823

Production cost of current titanium metallurgical process and possibility of new alternative process

  • 摘要: 金属钛由于其优异的性能而被用作高端结构材料。然而,在我们的日常生活中金属钛的利用却非常有限。全球金属钛年产量仅为钛白粉的1/30,从金属钛的性能和其丰富资源储量来看是极其不自然的。制约金属钛广泛使用的主要因素是其昂贵的价格。比较了金属钛、铝以及钢铁从矿石原料到金属的生产过程,并分析了现行金属钛生产过程的成本构成。在此基础上,分析了迄今为止已开发的新型钛冶炼工艺,从缩短生产流程,尤其是减少化学反应步骤的角度出发,探讨简化冶金流程、降低生产成本的可能性。指出,比较而言,以钛铁矿FeTiO3作为起始原料,经过碳热还原制备碳氧化钛TiCxO1−x,进而熔盐电解制备金属钛的冶金流程,有望大幅度降低能耗和生产成本。有待解决的问题是碳氧化钛阳极的规模化加工,以及在实际电解过程的连续运行等。
  • 图  1  金属价格与全球年产量的关系

    Figure  1.  The relationship between metal price and its production

    图  2  金属价格与地壳中元素丰度的关系

    Figure  2.  The relationship between metal price and its reserves

    图  3  现行金属钛冶炼工艺(Kroll法)[1]

    Figure  3.  The current titanium production process (Kroll process)[1]

    图  4  从钛铁矿(FeTiO3)出发的现行金属钛冶炼工艺的反应过程

    Figure  4.  The chemical reactions in the current process of titanium production from ilmenite (FeTiO3)

    图  5  钛锭、铝锭、不锈钢的分项成本对比

    Figure  5.  Comparison of subdivisional cost on ingot of titanium, aluminum, and stainless steel

    图  6  钛、铝、不锈钢铸锭的生产能耗对比

    Figure  6.  The energy consumption for ingot production of titanium, aluminum, and stainless steel

    图  7  四氯化钛电解工艺中的化学反应

    Figure  7.  The chemical reactions in the titanium production process through TiCl4 electrolysis

    图  8  Ti-O二元系的电导率

    Figure  8.  Electronic conductivity of Ti-O system

    图  9  可溶阳极熔盐电解工艺(USTB法)示意[23-25]

    Figure  9.  Schematic diagram of electrolysis process with consumable anode for titanium production, the USTB process[23-25]

    图  10  TiC0.5O0.5在氯化物熔体中电解的电极反应和电池反应

    Figure  10.  Electrode reactions and cell reaction during the electrolysis of TiC0.5O0.5 in chloride melt

    图  11  碳氧化钛在NaCl-KCl熔体中电解的阴极沉积产物的(a)扫描电镜照片,(b)X射线衍射图谱[24]

    Figure  11.  Titanium metal deposited on the cathode after electrolysis in NaCl–KCl melt: (a) scanning electron microscope (SEM) image of the product powder and (b) X-ray diffraction pattern of the product titanium[24]

    图  12  从钛铁矿到金属钛的新冶炼工艺流程

    Figure  12.  The chemical reactions in the proposed new metallurgical process through titanium oxycarbide electrolysis from ilmenite (FeTiO3)

    图  13  (a)钛铁矿原料和经碳热还原和分离工序得到的(b)TiCxO1−x粉末、(c)副产品:铁粉的光学照片和X射线衍射图谱

    Figure  13.  Photo images and X-ray diffraction patterns of (a): ilmenite ore used for the carbon reduction, (b): TiCxO1−x product powders after reduction and separation, and (c): by-product iron (Fe) powders

    表  1  金属含量、世界年产量、矿石价格和金属价格

    Table  1.   Reserves (Clarke number, CN), world annual production (WAP), mining cost (MC), and price of metals

    元素金属含量(CN)
    ×106
    世界年产量
    /万t
    矿石价格
    /(美元· t−1)
    金属价格/(美元· t−1)
    Al8130058002602 000
    Fe50000162800150325
    Mg209001012452180
    Ti4400204608150
    Zn70140024002860
    Cu55235050905870
    Pb13111023702720
    下载: 导出CSV
  • [1] (东邦钛业有限公司[DB/OL]. https://www.toho-titanium.co.jp/products/sponge.html.)

    東邦チタニウム株式会社: https://www.toho-titanium.co.jp/products/sponge.html
    [2] Marco V. Ginatta, Gianmichele Orsello. Plant for the electrolytic production of reactive metals in molten salt baths, US Patent: 4670121[P]. 1987.
    [3] Marco V Ginatta, Gianmichele Orsello, Riccardo Berruti. Method and cell for the electrolytic production of a polyvalent metal, US Patent: 5015342[P]. 1991.
    [4] Marco V. Ginatta. Economics and production of primary titanium by electrolytic winning[C]//EPD Congress, 2001: 13−41.
    [5] Toshihide Takenaka, Takayuki Suzuki, Masahiro Ishikawa, et al. The new concept for electrowinning process of liquid titanium metal in molten salt[J]. Electrochemistry, 1999,67(6):661−668. doi: 10.5796/electrochemistry.67.661
    [6] Cardarelli Francois. A method for electrowinning of titanium or alloy from titanium oxide containing compound in the liquid state, International Pat: WO 03046258[P]. 2003.
    [7] Donald R Sadoway. Electrochemical processing of refractory metal[J]. JOM, 1991,43(7):15−19. doi: 10.1007/BF03220614
    [8] George Zheng Chen, Derek J Fray, Tom W Farthing. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000,407(6802):361−364. doi: 10.1038/35030069
    [9] Derek J Fray. Emerging molten salt technologies for metals production[J]. JOM, 2001,53(10):27−31.
    [10] Katsutoshi Ono, Ryosuke O Suzuki. A new concept for producing Ti sponge: calciothermic reduction[J]. JOM, 2002,54(2):59−61. doi: 10.1007/BF02701078
    [11] Ryosuke O Suzuki, Shuichi Inoue. Calciothermic reduction of titanium oxide in molten CaCl2[J]. Metallurgical and Materials Transactions B, 2003,34(3):277−285. doi: 10.1007/s11663-003-0073-2
    [12] Toru H Okabe, Takashi Oda, Yoshitake Mitsuda. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004,364(1−2):156−163. doi: 10.1016/S0925-8388(03)00610-8
    [13] Toru H Okabe, Takashi Oda, Yoshitake Mitsuda. Titanium powder production by preform reduction process[C]//Ti-2003 Science and Technology. In Lhutjering G, Albrecht J eds. Weinheim: Wiley-VCH, 2003: 261−268.
    [14] Fang Zhigang Zak, Xia Yang, Sun Pei, et al. Molten salt de-oxygenation of metal powders, International Pat: WO 2016090052[P]. 2016.
    [15] Zhang Ying, Fang Zhigang Zak, Xia Yang, et al. Hydrogen assisted magnesiothermic reduction of TiO2[J]. Chemical Engineering Journal, 2017,308:299−310. doi: 10.1016/j.cej.2016.09.066
    [16] Hiroaki Okamoto, Mark Schlesinger. Binary alloy phase diagrams[M]. ASM International, Materials Park, OH, USA, 1990.
    [17] Eugene Wainer. Cleveland Heights. Production of titanium, US Patent: 2722509[P]. 1955.
    [18] Eugene Wainer. Cell feed material for the production of titanium, US Patent: 2868703[P]. 1959.
    [19] Takeuchi S, Watanabe H. Studies on the electrolytic extraction of Ti from TiO, TiC and TiCO alloy as anode[J]. Journal of the Japan Institute of Metals, 1964,28(10):627−632. (竹内栄, 渡辺治. 从TiO、TiC和TiCO合金阳极中电解提取Ti的研究[J]. 日本金属学院学报, 1964,28(10):627−632. doi: 10.2320/jinstmet1952.28.10_627
    [20] Yasuhiko Hashimoto. Molten salt electrolysis of TiCO alloy or TiC as anode[J]. Journal of the Japan Institute of Metals, 1968,32(12):1327−1334. (桥本雍彦. 以TiCO合金或TiC为阳极的熔盐电解制备钛金属[J]. 日本金属学院学报, 1968,32(12):1327−1334. doi: 10.2320/jinstmet1952.32.12_1327
    [21] Hashimoto Y. Extraction of Ti from arc-reduced Ti-CO and TiC soluble anodes[J]. Journal of the Japan Institute of Metals, 1971,35(3):282−288. (桥本雍彦. Ti-CO和TiC可溶性阳极电弧还原提取Ti[J]. 日本金属学院学报, 1971,35(3):282−288. doi: 10.2320/jinstmet1952.35.3_282
    [22] Hashimoto Y. Anodic dissolution of low-grade (δ) Ti-C-O soluble anode in molten salt for electrolytic extraction of titanium[J]. Journal of the Japan Institute of Metals, 1971,35(5):480−486. (桥本雍彦. 从低品位Ti-C-O可溶性阳极中熔盐电解溶出钛[J]. 日本金属学院学报, 1971,35(5):480−486. doi: 10.2320/jinstmet1952.35.5_480
    [23] (朱鸿民, 焦树强, 顾学范. 一氧化钛/碳化钛可溶性固溶体阳极电解生产纯钛的方法, 中国: 200510011684.6[P]. 2005.)

    Zhu Hongmin, Jiao Shuqiang, Gu Xuefan. A method for producing pure titanium through electrolysis of TiO·mTiC (0≤m≤1) soluble solid solution anode, Chinese Patent: CN200510011684.6[P]. 2005.
    [24] Jiao Shuqiang, Zhu Hongmin. Novel metallurgical process for titanium production[J]. Journal of Materials Research, 2006,21(9):2172−2175. doi: 10.1557/jmr.2006.0268
    [25] Jiao Shuqiang, Ning Xiaohui, Huang Kai, et al. Electrochemical dissolution behavior of conductive TiCxO1−x solid solutions[J]. Pure and Applied Chemistry, 2010,82(8):1691−1699. doi: 10.1351/PAC-CON-09-10-39
    [26] Gungor Mehmet N, M Ashraf Imam, Froes F H. Innovations in titanium technology[M]. Warendale: Wiley’s Publishing, 2007.
    [27] Withers J. International round table on titanium production in molten salts[C]//Cologne, Germany, 2008, 70: 2–4.
    [28] Ning Xiaohui, Xiao Jiusan, Jiao Shuqiang, et al. Anodic dissolution of titanium oxycarbide TiCxO1−x with different O/C ratio[J]. Journal of the Electrochemical Society, 2019,166(2):E22. doi: 10.1149/2.0141902jes
    [29] Gao Chengjun, Jiang Bo, Cao Zhanmin, et al. Preparation of titanium oxycarbide from various titanium raw materials: Part I. Carbothermal reduction[J]. Rare Metals, 2010,29(6):547−551. doi: 10.1007/s12598-010-0166-4
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  492
  • HTML全文浏览量:  71
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回