中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛金属冶炼的生产成本以及新型钛冶金工艺的可能性

朱鸿民 肖九三 焦树强 卢鑫

朱鸿民, 肖九三, 焦树强, 卢鑫. 钛金属冶炼的生产成本以及新型钛冶金工艺的可能性[J]. 钢铁钒钛, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
引用本文: 朱鸿民, 肖九三, 焦树强, 卢鑫. 钛金属冶炼的生产成本以及新型钛冶金工艺的可能性[J]. 钢铁钒钛, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
Zhu Hongmin, Xiao Jiusan, Jiao Shuqiang, Lu Xin. Production cost of current titanium metallurgical process and possibility of new alternative process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002
Citation: Zhu Hongmin, Xiao Jiusan, Jiao Shuqiang, Lu Xin. Production cost of current titanium metallurgical process and possibility of new alternative process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 10-16, 36. doi: 10.7513/j.issn.1004-7638.2021.03.002

钛金属冶炼的生产成本以及新型钛冶金工艺的可能性

doi: 10.7513/j.issn.1004-7638.2021.03.002
详细信息
  • 中图分类号: TF823

Production cost of current titanium metallurgical process and possibility of new alternative process

  • 摘要: 金属钛由于其优异的性能而被用作高端结构材料。然而,在我们的日常生活中金属钛的利用却非常有限。全球金属钛年产量仅为钛白粉的1/30,从金属钛的性能和其丰富资源储量来看是极其不自然的。制约金属钛广泛使用的主要因素是其昂贵的价格。比较了金属钛、铝以及钢铁从矿石原料到金属的生产过程,并分析了现行金属钛生产过程的成本构成。在此基础上,分析了迄今为止已开发的新型钛冶炼工艺,从缩短生产流程,尤其是减少化学反应步骤的角度出发,探讨简化冶金流程、降低生产成本的可能性。指出,比较而言,以钛铁矿FeTiO3作为起始原料,经过碳热还原制备碳氧化钛TiCxO1−x,进而熔盐电解制备金属钛的冶金流程,有望大幅度降低能耗和生产成本。有待解决的问题是碳氧化钛阳极的规模化加工,以及在实际电解过程的连续运行等。
  • 图  1  金属价格与全球年产量的关系

    Figure  1.  The relationship between metal price and its production

    图  2  金属价格与地壳中元素丰度的关系

    Figure  2.  The relationship between metal price and its reserves

    图  3  现行金属钛冶炼工艺(Kroll法)[1]

    Figure  3.  The current titanium production process (Kroll process)[1]

    图  4  从钛铁矿(FeTiO3)出发的现行金属钛冶炼工艺的反应过程

    Figure  4.  The chemical reactions in the current process of titanium production from ilmenite (FeTiO3)

    图  5  钛锭、铝锭、不锈钢的分项成本对比

    Figure  5.  Comparison of subdivisional cost on ingot of titanium, aluminum, and stainless steel

    图  6  钛、铝、不锈钢铸锭的生产能耗对比

    Figure  6.  The energy consumption for ingot production of titanium, aluminum, and stainless steel

    图  7  四氯化钛电解工艺中的化学反应

    Figure  7.  The chemical reactions in the titanium production process through TiCl4 electrolysis

    图  8  Ti-O二元系的电导率

    Figure  8.  Electronic conductivity of Ti-O system

    图  9  可溶阳极熔盐电解工艺(USTB法)示意[23-25]

    Figure  9.  Schematic diagram of electrolysis process with consumable anode for titanium production, the USTB process[23-25]

    图  10  TiC0.5O0.5在氯化物熔体中电解的电极反应和电池反应

    Figure  10.  Electrode reactions and cell reaction during the electrolysis of TiC0.5O0.5 in chloride melt

    图  11  碳氧化钛在NaCl-KCl熔体中电解的阴极沉积产物的(a)扫描电镜照片,(b)X射线衍射图谱[24]

    Figure  11.  Titanium metal deposited on the cathode after electrolysis in NaCl–KCl melt: (a) scanning electron microscope (SEM) image of the product powder and (b) X-ray diffraction pattern of the product titanium[24]

    图  12  从钛铁矿到金属钛的新冶炼工艺流程

    Figure  12.  The chemical reactions in the proposed new metallurgical process through titanium oxycarbide electrolysis from ilmenite (FeTiO3)

    图  13  (a)钛铁矿原料和经碳热还原和分离工序得到的(b)TiCxO1−x粉末、(c)副产品:铁粉的光学照片和X射线衍射图谱

    Figure  13.  Photo images and X-ray diffraction patterns of (a): ilmenite ore used for the carbon reduction, (b): TiCxO1−x product powders after reduction and separation, and (c): by-product iron (Fe) powders

    表  1  金属含量、世界年产量、矿石价格和金属价格

    Table  1.   Reserves (Clarke number, CN), world annual production (WAP), mining cost (MC), and price of metals

    元素金属含量(CN)
    ×106
    世界年产量
    /万t
    矿石价格
    /(美元· t−1)
    金属价格/(美元· t−1)
    Al8130058002602 000
    Fe50000162800150325
    Mg209001012452180
    Ti4400204608150
    Zn70140024002860
    Cu55235050905870
    Pb13111023702720
    下载: 导出CSV
  • [1] (东邦钛业有限公司[DB/OL]. https://www.toho-titanium.co.jp/products/sponge.html.)

    東邦チタニウム株式会社: https://www.toho-titanium.co.jp/products/sponge.html
    [2] Marco V. Ginatta, Gianmichele Orsello. Plant for the electrolytic production of reactive metals in molten salt baths, US Patent: 4670121[P]. 1987.
    [3] Marco V Ginatta, Gianmichele Orsello, Riccardo Berruti. Method and cell for the electrolytic production of a polyvalent metal, US Patent: 5015342[P]. 1991.
    [4] Marco V. Ginatta. Economics and production of primary titanium by electrolytic winning[C]//EPD Congress, 2001: 13−41.
    [5] Toshihide Takenaka, Takayuki Suzuki, Masahiro Ishikawa, et al. The new concept for electrowinning process of liquid titanium metal in molten salt[J]. Electrochemistry, 1999,67(6):661−668. doi: 10.5796/electrochemistry.67.661
    [6] Cardarelli Francois. A method for electrowinning of titanium or alloy from titanium oxide containing compound in the liquid state, International Pat: WO 03046258[P]. 2003.
    [7] Donald R Sadoway. Electrochemical processing of refractory metal[J]. JOM, 1991,43(7):15−19. doi: 10.1007/BF03220614
    [8] George Zheng Chen, Derek J Fray, Tom W Farthing. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000,407(6802):361−364. doi: 10.1038/35030069
    [9] Derek J Fray. Emerging molten salt technologies for metals production[J]. JOM, 2001,53(10):27−31.
    [10] Katsutoshi Ono, Ryosuke O Suzuki. A new concept for producing Ti sponge: calciothermic reduction[J]. JOM, 2002,54(2):59−61. doi: 10.1007/BF02701078
    [11] Ryosuke O Suzuki, Shuichi Inoue. Calciothermic reduction of titanium oxide in molten CaCl2[J]. Metallurgical and Materials Transactions B, 2003,34(3):277−285. doi: 10.1007/s11663-003-0073-2
    [12] Toru H Okabe, Takashi Oda, Yoshitake Mitsuda. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004,364(1−2):156−163. doi: 10.1016/S0925-8388(03)00610-8
    [13] Toru H Okabe, Takashi Oda, Yoshitake Mitsuda. Titanium powder production by preform reduction process[C]//Ti-2003 Science and Technology. In Lhutjering G, Albrecht J eds. Weinheim: Wiley-VCH, 2003: 261−268.
    [14] Fang Zhigang Zak, Xia Yang, Sun Pei, et al. Molten salt de-oxygenation of metal powders, International Pat: WO 2016090052[P]. 2016.
    [15] Zhang Ying, Fang Zhigang Zak, Xia Yang, et al. Hydrogen assisted magnesiothermic reduction of TiO2[J]. Chemical Engineering Journal, 2017,308:299−310. doi: 10.1016/j.cej.2016.09.066
    [16] Hiroaki Okamoto, Mark Schlesinger. Binary alloy phase diagrams[M]. ASM International, Materials Park, OH, USA, 1990.
    [17] Eugene Wainer. Cleveland Heights. Production of titanium, US Patent: 2722509[P]. 1955.
    [18] Eugene Wainer. Cell feed material for the production of titanium, US Patent: 2868703[P]. 1959.
    [19] Takeuchi S, Watanabe H. Studies on the electrolytic extraction of Ti from TiO, TiC and TiCO alloy as anode[J]. Journal of the Japan Institute of Metals, 1964,28(10):627−632. (竹内栄, 渡辺治. 从TiO、TiC和TiCO合金阳极中电解提取Ti的研究[J]. 日本金属学院学报, 1964,28(10):627−632. doi: 10.2320/jinstmet1952.28.10_627
    [20] Yasuhiko Hashimoto. Molten salt electrolysis of TiCO alloy or TiC as anode[J]. Journal of the Japan Institute of Metals, 1968,32(12):1327−1334. (桥本雍彦. 以TiCO合金或TiC为阳极的熔盐电解制备钛金属[J]. 日本金属学院学报, 1968,32(12):1327−1334. doi: 10.2320/jinstmet1952.32.12_1327
    [21] Hashimoto Y. Extraction of Ti from arc-reduced Ti-CO and TiC soluble anodes[J]. Journal of the Japan Institute of Metals, 1971,35(3):282−288. (桥本雍彦. Ti-CO和TiC可溶性阳极电弧还原提取Ti[J]. 日本金属学院学报, 1971,35(3):282−288. doi: 10.2320/jinstmet1952.35.3_282
    [22] Hashimoto Y. Anodic dissolution of low-grade (δ) Ti-C-O soluble anode in molten salt for electrolytic extraction of titanium[J]. Journal of the Japan Institute of Metals, 1971,35(5):480−486. (桥本雍彦. 从低品位Ti-C-O可溶性阳极中熔盐电解溶出钛[J]. 日本金属学院学报, 1971,35(5):480−486. doi: 10.2320/jinstmet1952.35.5_480
    [23] (朱鸿民, 焦树强, 顾学范. 一氧化钛/碳化钛可溶性固溶体阳极电解生产纯钛的方法, 中国: 200510011684.6[P]. 2005.)

    Zhu Hongmin, Jiao Shuqiang, Gu Xuefan. A method for producing pure titanium through electrolysis of TiO·mTiC (0≤m≤1) soluble solid solution anode, Chinese Patent: CN200510011684.6[P]. 2005.
    [24] Jiao Shuqiang, Zhu Hongmin. Novel metallurgical process for titanium production[J]. Journal of Materials Research, 2006,21(9):2172−2175. doi: 10.1557/jmr.2006.0268
    [25] Jiao Shuqiang, Ning Xiaohui, Huang Kai, et al. Electrochemical dissolution behavior of conductive TiCxO1−x solid solutions[J]. Pure and Applied Chemistry, 2010,82(8):1691−1699. doi: 10.1351/PAC-CON-09-10-39
    [26] Gungor Mehmet N, M Ashraf Imam, Froes F H. Innovations in titanium technology[M]. Warendale: Wiley’s Publishing, 2007.
    [27] Withers J. International round table on titanium production in molten salts[C]//Cologne, Germany, 2008, 70: 2–4.
    [28] Ning Xiaohui, Xiao Jiusan, Jiao Shuqiang, et al. Anodic dissolution of titanium oxycarbide TiCxO1−x with different O/C ratio[J]. Journal of the Electrochemical Society, 2019,166(2):E22. doi: 10.1149/2.0141902jes
    [29] Gao Chengjun, Jiang Bo, Cao Zhanmin, et al. Preparation of titanium oxycarbide from various titanium raw materials: Part I. Carbothermal reduction[J]. Rare Metals, 2010,29(6):547−551. doi: 10.1007/s12598-010-0166-4
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1309
  • HTML全文浏览量:  182
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回