留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸法钛白短流程工艺水热合成高纯二氧化钛

田从学

田从学. 硫酸法钛白短流程工艺水热合成高纯二氧化钛[J]. 钢铁钒钛, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004
引用本文: 田从学. 硫酸法钛白短流程工艺水热合成高纯二氧化钛[J]. 钢铁钒钛, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004
Tian Congxue. Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004
Citation: Tian Congxue. Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 25-30. doi: 10.7513/j.issn.1004-7638.2021.03.004

硫酸法钛白短流程工艺水热合成高纯二氧化钛

doi: 10.7513/j.issn.1004-7638.2021.03.004
基金项目: 国家自然科学基金(50804025);四川省科技计划项目(2014JY0197,2019GFW001-04);攀枝花市科技计划项目(2018CY-G-16,20180816,201810),四川省高校重点实验室项目(LYJ1907),省、市级人才培养项目
详细信息
    作者简介:

    田从学(1973—),男,四川广汉人,博士(后),教授,长期从事二氧化钛的制备与应用研究工作,E-mail:tcx7311@163.com

  • 中图分类号: TF823

Hydrothermal synthesis of high purity TiO2 from metatitanic acid via short sulfate process

  • 摘要: 以低浓度工业钛液经钛白短流程工艺水解所制的偏钛酸为原料,经水热工艺制备出高纯二氧化钛,考察了浆料浓度、水热温度、水热时间等对产物结构与纯度的影响,采用XRD、粒度分析、BET、SEM和TiO2含量测定等对样品进行了表征。认为:水热条件影响水热偏钛酸的溶解、成核、晶体生长、聚合与团聚等,并影响偏钛酸的结构、粒径分布和比表面积,改变其杂质吸附量,并最终影响高纯TiO2的结构与纯度。最佳水热条件为:料浆浓度160 g/L,水热温度140 ℃,水热时间36 h,所得高纯二氧化钛含量为99.99%。
  • 图  1  不同浆料浓度所得水热偏钛酸的XRD谱图

    Figure  1.  XRD patterns of metatitanic acid from slurries with different concentrations

    图  2  不同浆料浓度所得高纯TiO2的XRD谱图

    Figure  2.  XRD patterns of high purity TiO2 from slurries with different concentrations

    图  3  不同浆料浓度所得偏钛酸的N2吸附-脱附等温线

    Figure  3.  Nitrogen adsorption-desorption isotherms of hydrothermal metatitanic acid samples

    图  4  高纯TiO2的SEM照片

    Figure  4.  SEM of high purity TiO2

    表  1  浆料浓度对偏钛酸结构和高纯二氧化钛的结构与含量影响

    Table  1.   Effect of slurry concentration on structure and TiO2 content of metatitanic acid and high purity TiO2

    MA浆料浓度/(g·L−1)L(101),MA/nmDAV,MA /µmSBET/(m2·g−1)TiO2DAV,TiO2 /µmL(110)/nmw(TiO2)/%
    808.80.84116.1A10.2511299.87
    B1208.40.78102.8B10.2310199.95
    C1608.20.7196.93C10.2198.299.97
    D2008.30.80100.2D10.2410199.93
    E2408.60.85108.4E10.2610999.85
    下载: 导出CSV

    表  2  水热温度对偏钛酸和二氧化钛的影响

    Table  2.   Effect of hydrothermal temperature on the structures and composition of metatitanic acid and TiO2

    MA水热温度/℃SBET/(m2·g−1)DAV,PTS /µmTiO2DAV,TiO2 /µmw(TiO2)/%
    F 105 125.1 0.84 F1 0.37 99.25
    G 120 107.2 0.79 G1 0.30 99.76
    H 140 96.93 0.71 H1 0.21 99.97
    I 160 100.7 0.78 I1 0.26 99.81
    J 180 113.9 0.83 J1 0.33 99.28
    下载: 导出CSV

    表  3  水热时间对偏钛酸和高纯二氧化的影响

    Table  3.   Effect of hydrothermal time on the structure and composition for metatitanic acid and TiO2

    MA水热时间/hSBET /(m2·g−1)DAV,PTS /µmTiO2DAV,TiO2 /µmw(TiO2)/%
    K 12 107.4 0.79 K1 0.28 99.83
    L 24 96.93 0.71 L1 0.21 99.97
    M 36 91.58 0.69 M1 0.20 99.99
    N 48 104.5 0.76 N1 0.24 99.95
    Q 60 111.8 0.81 Q1 0.30 99.85
    下载: 导出CSV
  • [1] Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007,107:2891−2959. doi: 10.1021/cr0500535
    [2] Liu Y, Tian L H, Tan X Y, et al. Synthesis, properties, and applications of black titanium dioxide nanomaterials[J]. Science Bulletin, 2017,62:431−441. doi: 10.1016/j.scib.2017.01.034
    [3] Bai Y, Mora-Sero I, De Angelis F, et al. Titanium dioxide nanomaterials for photovoltaic applications[J]. Chemical Reviews, 2014,114:10095−10130. doi: 10.1021/cr400606n
    [4] Bai J, Zhou B X. Titanium dioxide nanomaterials for sensor applications[J]. Chemical Reviews, 2014,114:10131−10176. doi: 10.1021/cr400625j
    [5] Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014,114:9987−10043. doi: 10.1021/cr500008u
    [6] Li W, Elzatahry A, Aldhayan D, et al. Core-shell structured titanium dioxide nanomaterials for solar energy utilization[J]. Chemical Society Reviews, 2018,47:8203−8237. doi: 10.1039/C8CS00443A
    [7] Katir N, Marcotte N, Michlewska S, et al. Dendrimer for templating the growth of porous catechol-coordinated titanium dioxide frameworks: toward hemocompatible nanomaterials[J]. ACS Applied Nano Materials, 2019,2:2979−2990. doi: 10.1021/acsanm.9b00382
    [8] Wang M X, Gao Q, Duan H, et al. Scalable synthesis of high-purity TiO2 whiskers via ion exchange method enables versatile applications[J]. RSC Advances, 2019,9:23735−23743. doi: 10.1039/C9RA03870A
    [9] Li G S, Li L P, Boerio-Goates J, et al. High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry[J]. Journal of the American Chemical Society, 2005,127:8659−8666. doi: 10.1021/ja050517g
    [10] O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353:737−740. doi: 10.1038/353737a0
    [11] Ma T L, Akiyama M, Abe E, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode[J]. Nano Letters, 2005,5:2543−2547. doi: 10.1021/nl051885l
    [12] Wang C C, Ying J Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals[J]. Chemistry of Materials, 1999,11:3113−3120. doi: 10.1021/cm990180f
    [13] Zhu X F, Zheng S L, Zhang Y, et al. Potentially more ecofriendly chemical pathway for production of high-purity TiO2 from titanium slag[J]. ACS Sustainable Chemistry & Engineering, 2019,7:4821−4830.
    [14] Barringer E A, Bowen H K. High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties[J]. Langmuir, 1985,1:414−420. doi: 10.1021/la00064a005
    [15] Akhtar M K, Yun X O, Pratsinis S E. Vapor synthesis of titania powder by titanium tetrachloride oxidation[J]. AIChE Journal, 1991,37:1561−1570. doi: 10.1002/aic.690371013
    [16] Shuang Y, Hou Y, Zhang B, et al. Impurity-free synthesis of cube-like single-crystal anatase TiO2 for high performance dye-sensitized solar cell[J]. Industrial & Engineering Chemistry Research, 2013,52:4098−4102.
    [17] Li Z H, Wang Z C, Li G. Preparation of nano-titanium dioxide from ilmenite using sulfuric acid-decomposition by liquid phase method[J]. Powder Technology, 2016,287:256−263. doi: 10.1016/j.powtec.2015.09.008
    [18] Bavykin D V, Parmon V N, Lapkin A A, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes[J]. Journal of Materials Chemistry, 2004,14:3370−3377. doi: 10.1039/b406378c
    [19] Yu J G, Wang G H, Cheng B, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders[J]. Applied Catalysis B-Environmental, 2007,69:171−180. doi: 10.1016/j.apcatb.2006.06.022
    [20] Suwannaruang T, Kidkhunthod P, Chanlek N, et al. High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater[J]. Applied Surface Science, 2019,478:1−14. doi: 10.1016/j.apsusc.2019.01.158
    [21] Tian C X. Effects of hydrolysis conditions on high purity TiO2 preparation from industrial low concentration titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2020,41(2):14−19. (田从学. 低浓度工业钛液制备高纯二氧化钛的水解条件研究[J]. 钢铁钒钛, 2020,41(2):14−19.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  109
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-04
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回