留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型溶剂热体系制备特殊暴露面锐钛矿TiO2纳米棒的合成研究

刘进

刘进. 新型溶剂热体系制备特殊暴露面锐钛矿TiO2纳米棒的合成研究[J]. 钢铁钒钛, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005
引用本文: 刘进. 新型溶剂热体系制备特殊暴露面锐钛矿TiO2纳米棒的合成研究[J]. 钢铁钒钛, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005
Liu Jin. Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005
Citation: Liu Jin. Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 31-36. doi: 10.7513/j.issn.1004-7638.2021.03.005

新型溶剂热体系制备特殊暴露面锐钛矿TiO2纳米棒的合成研究

doi: 10.7513/j.issn.1004-7638.2021.03.005
基金项目: 2021年度河南省高等学校重点科研项目(21A480007); 2021年度河南省科技攻关项目(212102210243);2021年度河南省高等学校重点科研项目(21B430010);开封大学2017年度博士点基金项目(KDBS-2017-001)
详细信息
    作者简介:

    刘进(1979—),男,河南开封人,高级工程师,工学博士,主要研究方向为新能源材料,E-mail:liujin9931@qq.com

  • 中图分类号: TF823

Synthesis of anatase TiO2 nanorods with special exposed surface in a novel solvothermal system

  • 摘要: 以四丁基氢氧化铵(TBAH)为形貌控制剂,采用一种新的无氟溶剂热反应体系,实现了特定晶面的可控合成,制备出了锐钛矿型TiO2单晶纳米棒材料。所获得的TiO2纳米棒主要由表面的{010}小平面控制。用该纳米棒制成的染料敏化电池(DSSCs)的短路电流密度Jsc约为10.9 mA/cm2,开路电压Voc约为0.74 V,光电功率转换效率约为5.75%;比用商业P25型 TiO2制成的DSSCs具有更为优异的电池性能,电池的短路电流密度、填充因子、功率转换效率分别提高了2.83%、10.94%和10.58%。在材料表征的基础上,对其形成机理进行了初步的探讨。
  • 图  1  新型溶剂热合成法制备的TiO2纳米棒SEM形貌

    Figure  1.  SEM images of TiO2 nanorods prepared by new hydrothermal synthesis

    图  2  单晶纳米TiO2棒的(a) TEM和(b) HRTEM形貌(插图为傅立叶变换(FFT)图和结构示意)

    Figure  2.  (a) TEM and (b) HRTEM images of single-crystal nano-TiO2 rods (the insets are Fourier transform (FFT) diagrams and structural schematics)

    图  3  (a) TiO2纳米棒的XRD图谱;(b)锐钛矿TiO2的标准XRD图谱

    Figure  3.  (a) XRD pattern of TiO2 nanorods; (b) Standard XRD pattern of anatase TiO2

    图  4  TiO2纳米棒和P25型TiO2分别制成的DSSCs的光伏曲线

    Figure  4.  Photovoltaic performance of DSSC prepared with the TiO2 nanorods and P25 TiO2

    图  5  TiO6 八面体链接聚合物示意[18]

    Figure  5.  Schematic diagram of TiO2 octahedral linked polymer

    表  1  由P25 TiO2和TiO2纳米棒制成的DSSC的电池参数

    Table  1.   DSSC parameters of battery respectively made of P25 TiO2 and TiO2 nanorods

    样品Voc/VJsc/(mA· cm−2)FFη/%
    P25 TiO20.7710.60.645.20
    TiO2纳米棒0.7410.90.715.75
    下载: 导出CSV
  • [1] Kavan L, Gratzel M, Gilbert S E, et al. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. J. Am. Chem. Soc., 1996,118:6716−6723. doi: 10.1021/ja954172l
    [2] Chen J S, Tan Y L, Li C M, et al. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J]. J. Am. Chem. Soc., 2010, 132: 6124−6130. https://pubmed.ncbi.nlm.nih.gov/20392065.
    [3] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95: 735−758. https://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=2113324.
    [4] Mao Y, Wong S S. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures[J]. J. Am. Chem. Soc., 2006,128:8217−8226. doi: 10.1021/ja0607483
    [5] Amano F, Yasumoto T, Prieto-Mahaney, et al. Photocatalytic activity of octahedral single-crystalline mesoparticles of anatase titanium(IV) oxide[J]. Chem. Commun., 2009, 17: 2311–2313. https://pubs.rsc.org/en/content/articlelanding/2009/cc/b822634b#!divAbstract.
    [6] Zhang Z, Wang C C, Zakaria R, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J. Phys. Chem. B, 1998,102:10871−10878. doi: 10.1021/jp982948%2B
    [7] YangW G, Wan F R, Chen Q W, et al. Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells[J]. J. Mater. Chem., 2010, 20: 2870−2876. https://pubs.rsc.org/en/content/articlelanding/2010/JM/B923105F#!divAbstract.
    [8] Yang W, Li J, Wang Y, et al. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells[J]. Chem. Commun., 2011, 47: 1809−1811. https://pubs.rsc.org/en/content/articlelanding/2011/CC/C0CC03312J#!divAbstract.
    [9] Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells, 1998,54:265−275. doi: 10.1016/S0927-0248(98)00078-6
    [10] TachibanaY, Sayama K, Arakawa H. Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells[J]. Chem. Mater., 2002, 14: 2527−2535. https://pubs.acs.org/toc/cmatex/14/6.
    [11] Liu Leng, En Yi. Synthesis, transformation mechanism and photocatalytic properties of various morphologies anatase TiO2 nanocrystals derived from tetratitanate nanobelts[J]. Chemistry Select, 2018,3:9953 −9959.
    [12] Pu M. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Appl. Phys. Lett., 2013,102:131906. doi: 10.1063/1.4799162
    [13] Lazzeri M, Vittadini A, Selloni A. Erratum: Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys. Rev. B, 2002,65(11):119901. doi: 10.1103/PhysRevB.65.119901
    [14] Wen P, Ishikawa Y, Itoh H, et al. Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals[J]. J Phys Chem C, 2009,113:20275−20280. doi: 10.1021/jp908181e
    [15] Wu B, Guo C, Zheng N, et al. Nonaqueous production of nanostructured anatase with high-energy facets[J]. J. Am. Chem. Soc., 2008,130:17563−17567. doi: 10.1021/ja8069715
    [16] Liu Jin, Luo Jun, Yang Weiguang, et al. Synthesis of single-crystalline anatase TiO2 nanorods with high-performance dye-sensitized solar cells[J]. J. Mater. Sci. Technol., 2015,31(1):106−109. doi: 10.1016/j.jmst.2014.07.015
    [17] Liu C M, Yang S H. Synthesis of angstrom-scale anatasetitania atomic wires[J]. Acs Nano, 2009,3(4):1025−1031. doi: 10.1021/nn900157r
    [18] Chemseddine A, Moritz T. Nanostructuringtitania control over nanocrystals structure, size, shape, and organization[J]. Eur. J. Inorg. Chem., 1999,(2):235−245.
    [19] Yang Weiguang, Wang Yali, Shi Weimin. One-step synthesis of single-crystal anatase TiO2 tetragonal faceted-nanorods for improved-performance dye-sensitized solar cells[J]. Cryst Eng Comm, 2012,14:230−234. doi: 10.1039/C1CE05844D
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  15
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回