Study on the acidolysis properties of titanium ore recovered from acidolysis residue
-
摘要: 以酸解残渣中通过磁选获得的磁选回收矿为原料,使用化学分析、XRD、SEM、岩相分析等手段对比了磁选回收矿与常规钛精矿在化学成分、物相结构、钛元素赋存状态等方面的差异,在此基础上,进行了酸解对比试验。结果表明:磁选回收矿TiO2品位约为38%,较钛精矿低约10%,其主要物相为钛铁矿约占65%,其次为石英和硅酸盐相,钛元素主要赋存于钛铁矿中约占87%。磁选回收矿粒度较小、表面有较多裂纹,单独酸解具有较好的酸解性能,但由于品位较低,其酸解钛液浓度偏低,不利于后期浓缩;磁选回收矿可与攀枝花PT20矿进行混合酸解,对酸解率无不良影响,添加比例在10%~15%时酸解率和过滤速度综合效果最佳,但是磁选回收矿和含镁较高的白马20矿混合酸解时,较高镁含量导致钛液比重增大,含硅絮凝物不易沉降,过滤速度慢。Abstract: Using the titanium ore recovered from the acidolysis residue and the conventional titanium concentrate as raw materials, the differences in chemical compositions, phase structures and occurrence states of titanium between the materials were analyzed and compared by chemical analysis, XRD, SEM and lithofacies analyses. Based on the analyses, the acidolysis experiments were carried out. The results show that the grade of TiO2 in the recovered ore is about 38%, 10% lower than that in the conventional titanium concentrate. The main phase is ilmenite accounting for about 65%, followed by quartz and silicate phases. Titanium mainly occurs in ilmenite, accounting for about 87%. The recovered ore has better acidolysis performance because of its smaller particle size and more cracks on the surface. However, the titanium concentration of acidolysis solution is lower due to the lower grade of the recovered ore, which is not conducive to the latter concentration. The recovered ore can be mixed with Panzhihua PT20 ore for acidolysis, which has no adverse effect on the acidolysis rate. At the addition ratio of 10%~15%, the comprehensive effects of acidolysis rate and filtration speed are the best. However, when the recovered ore is mixed with Baima 20 ore for acidolysis, the higher magnesium content in Baima 20 ore leads to the increase of titanium liquid density, and the silica-containing flocs are not easy to settle and the filtration speed is slow.
-
Key words:
- titanium concentrate /
- residue /
- magnetic separation /
- acidolysis /
- settlement
-
表 1 几种钛矿的化学成分
Table 1. Chemical constituents of several titanium ores
样品名称 w/% TiO2 FeO TFe MgO SiO2 CaO Al2O3 攀枝花PT20矿 47.14 36.02 31.8 4.76 2.89 0.863 0.941 白马20矿 46.81 36.88 33.15 4.68 2.34 0.239 0.616 磁选回收矿 37.96 26.48 24.4 4.1 12.73 2.91 1.96 表 2 钛精矿主要物相的体积分布及钛元素的赋存比例
Table 2. Volume ratio of main phases of titanium concentrate and occurrence ratio of titanium
% 物相名 磁选回收矿 攀枝花PT20矿 白马20矿 物相体积 Ti 物相体积 Ti 物相体积 Ti 钛铁矿(FeTiO3) 65.13 86.99 88.85 97.6 86.84 98.4 钛铁矿+石英 10.14 8.46 0 0 0 0 透辉石[CaMg(SiO3)2] 7.51 0.26 0.79 0.03 0.58 0.02 石英 7.21 1.15 0.05 0 0.04 0 斜长石 1.79 0.18 0 0 0 0 镁铝尖晶石 0.93 0.05 0.08 0 0.76 0 石膏 0.68 0.07 0 0 0 0 钛闪石 0.62 0.05 0.83 0.08 0.65 0.06 辉石[XY(Si,Al)2O6] 0.62 0.11 0 0 0 0 钛铁矿+辉石 0.57 0.55 0 0 0 0 榍石[CaTiSiO4O] 0.39 0.36 0.7 0.45 0.03 0.02 金红石 0.34 0.68 0 0 0 0 镁橄榄石[2MgO·SiO2] 0.17 0 1.33 0.06 6.25 0.27 石英+(Ti,Fe)SO4 0.15 0.03 0 0 0 0 绿泥石(硅铝酸盐) 0 3.44 0.39 1.26 0.26 镁钛矿[MgTiO3] 0 0.86 0.55 0.8 0.53 其它 3.75 1.06 3.07 0.84 2.79 0.44 表 3 不同钛精矿的酸解结果
Table 3. Acidolysis results of different titanium concentrate
主反应时间/min 最高温度/℃ 最大体积/mL 抽速/min 残钛/% 钛液浓度/(g·L−1) 酸解率/% 攀枝花PT20矿 12.0 184 500 4.5 28.59 120 93.06 白马20矿 8.25 178 500 9.5 35.32 114 89.04 磁选回收矿 7.25 197 500 2.0 5.33 100 96.20 表 4 筛分前后钛精矿的酸解结果
Table 4. Acidolysis results of titanium concentrate before and after screening
酸矿比 反应酸浓度/% 最高温度/℃ 残渣重/g 残钛/% 酸解率/% 白马20矿筛前 1.53 84.5 189 12.21 34.55 90.84 白马20矿筛后 1.53 84.5 189 10.35 32.63 92.18 攀枝花PT20矿筛前 1.53 84.5 189 13.16 33.33 90.32 攀枝花PT20矿筛后 1.53 84.5 187 11.3 31.11 92.53 表 5 镁含量对抽速的影响
Table 5. Effect of magnesium content on filtration rate
编号 沉降时间/h 絮凝剂加量/% 氧化镁加量/(g·L−1) 抽速/min 1 2 0.0015 0 2 2 2 0.0015 1 3 3 2 0.0015 2 4 4 2 0.0015 3 5 -
[1] Yang F, Hlavacek V. Effective extraction of titanium from rutile by alow-temperature chloride process[J]. AIChE Journal, 2000,46(2):355−360. doi: 10.1002/aic.690460213 [2] Liao Xin, Yang Shaoli, Ma Lan, et al. Comparison and analysis of sulfuric acid process titanium dioxide prepared with titanium concentrate and titanium slag as raw materials respectively[J]. Inorganic Chemicals Industry, 2019,51(10):7−11. (廖鑫, 杨绍利, 马兰, 等. 以钛精矿和钛渣为原料制备硫酸法钛白粉的对比分析[J]. 无机盐工业, 2019,51(10):7−11. [3] Gao Jian. Discussion on phase transformation characteristics of titanium concentrate during continuous acidolysis process[J]. Metallurgical Analysis, 2019,39(12):8−15. (高健. 钛精矿连续酸解过程中物相变化特征探讨[J]. 冶金分析, 2019,39(12):8−15. [4] Guo Huiliang, Cao Bo, Yu Yaojie, et al. Recovery and utilization of waste residue of titanium dioxide acid hydrolysis[J]. China Coatings, 2017,32(8):59−62. (郭会良, 曹波, 于耀杰, 等. 硫酸法钛白粉酸解废渣的回收利用[J]. 中国涂料, 2017,32(8):59−62. [5] Meng Fancheng, Xue Tianyan, Liu Yahui, et al. Recovery of titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching[J]. Transactions of Nonferrous Metals Society of China, 2016,26(6):1696−1705. doi: 10.1016/S1003-6326(16)64247-4 [6] Yin Jianping He Tingting Tang Mingjie, et al. Titanium leaching from waste residues of titanium white acid hydrolysis[J]. Nonferrous Metals(Extractive Metallurgy), 2017,(6):20−23. (尹建平, 何婷婷, 唐明洁, 等. 钛白酸解废渣中钛的浸出工艺研究[J]. 有色金属(冶炼部分), 2017,(6):20−23. -