中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高钛高炉渣硫酸酸浸液沸腾水解制备二氧化钛的研究

黄晨 何思祺 唐玉梅 王岩 孙红娟

黄晨, 何思祺, 唐玉梅, 王岩, 孙红娟. 高钛高炉渣硫酸酸浸液沸腾水解制备二氧化钛的研究[J]. 钢铁钒钛, 2021, 42(3): 44-52, 93. doi: 10.7513/j.issn.1004-7638.2021.03.007
引用本文: 黄晨, 何思祺, 唐玉梅, 王岩, 孙红娟. 高钛高炉渣硫酸酸浸液沸腾水解制备二氧化钛的研究[J]. 钢铁钒钛, 2021, 42(3): 44-52, 93. doi: 10.7513/j.issn.1004-7638.2021.03.007
Huang Chen, He Siqi, Tang Yumei, Wang Yan, Sun Hongjuan. Preparation of titanium dioxide from acid leaching solution of high titanium blast furnace slag by boiling hydrolysis[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 44-52, 93. doi: 10.7513/j.issn.1004-7638.2021.03.007
Citation: Huang Chen, He Siqi, Tang Yumei, Wang Yan, Sun Hongjuan. Preparation of titanium dioxide from acid leaching solution of high titanium blast furnace slag by boiling hydrolysis[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 44-52, 93. doi: 10.7513/j.issn.1004-7638.2021.03.007

高钛高炉渣硫酸酸浸液沸腾水解制备二氧化钛的研究

doi: 10.7513/j.issn.1004-7638.2021.03.007
详细信息
    作者简介:

    黄晨(2000—),女,江苏徐州人,研究领域为工业固废资源化处理,E-mail: yebuer@qq.com;

    通讯作者:

    王岩,助教,长期从事环境污染调控与生态修复,E-mail: 741372147@qq.com

  • 中图分类号: TF823

Preparation of titanium dioxide from acid leaching solution of high titanium blast furnace slag by boiling hydrolysis

  • 摘要: 针对攀西地区高钛高炉渣有效处理不全面等问题,采用硫酸法对其钛组分进行提取,探究酸浸液沸腾水解过程中底液pH值、水解温度、加料速率、陈化时间以及二沸时间对Ti4+的水解率以及水解产物结构的影响,确定了最优水解条件。结果表明:底液pH值、水解温度、陈化时间对水解率及水解产物具有显著影响,底液pH值、加料速率以及陈化时间与水解产物的尺寸大小、分散性呈正相关,水解温度则与其呈负相关,二沸时间对其影响较小。最优水解条件为底液pH值1.7、水解温度105 ℃、加料速率6.6 mL/min、陈化时间25 min、二沸时间60 min,在此条件下Ti组分的水解率为90.71%,获得的偏钛酸经高温煅烧后为锐钛矿型二氧化钛,性能指标满足非颜料用二氧化钛的国家标准。
  • 图  1  底液pH对Ti组分水解率及产物白度的影响

    Figure  1.  Effect of pH on hydrolysis rate and whiteness of Ti component

    图  2  不同底液pH下水解产物的XRD图谱

    Figure  2.  XRD patterns of hydrolysate under different pH conditions

    图  3  不同底液pH下水解产物的粒径分布

    Figure  3.  Size distribution of hydrolysate under different pH conditions

    图  4  不同底液pH下水解产物的光学显微形貌

    Figure  4.  Microstructure of hydrolysates under different pH conditions

    图  5  水解温度对Ti组分水解率的影响

    Figure  5.  Effect of hydrolysis temperature on hydrolysis rate of Ti component

    图  6  不同水解温度下水解产物的粒径分布

    Figure  6.  Particle size distribution of hydrolysates at different hydrolysis temperatures

    图  7  不同水解温度下水解产物的光学显微形貌

    Figure  7.  Microstructure of hydrolysates at different hydrolysis temperatures

    图  8  加料速率对Ti组分水解率的影响

    Figure  8.  Effect of feeding rate on hydrolysis rate of Ti component

    图  9  不同加料速率下水解产物的粒径分布

    Figure  9.  Particle size distribution of hydrolysates at different feeding rates

    图  10  不同加料速率下水解产物的光学显微形貌

    Figure  10.  Microstructure of hydrolysates at different feeding rates

    图  11  陈化时间对Ti组分水解率的影响

    Figure  11.  Effect of maturation time on hydrolysis rate of Ti component

    图  12  不同陈化时间下水解产物的粒径分布

    Figure  12.  Particle size distribution of hydrolysates at different maturation time

    图  13  不同陈化时间下水解产物的光学显微形貌

    Figure  13.  Microstructure of hydrolysate at different maturation time

    图  14  二沸时间对Ti组分水解率的影响

    Figure  14.  Effect of second -boiling time on hydrolysis rate of Ti component

    图  15  不同二沸时间下水解产物的粒径分布

    Figure  15.  Particle size distribution of hydrolysates under different second-boiling time

    图  16  不同二沸时间下水解产物的光学显微形貌

    Figure  16.  Microstructure of hydrolysate under different second-boiling time

    图  17  煅烧产物的XRD图谱

    Figure  17.  XRD pattern of calcined product

    图  18  偏钛酸及煅烧产物的扫描电镜图谱

    Figure  18.  SEM of metatitanic acid and calcined products

    表  1  高钛高炉渣酸浸液中各金属阳离子浓度

    Table  1.   Concentration of metal cations in acid leaching solution of high titanium blast furnace slag g/L

    Ti4+Al3+Mg2+Fe3+
    333119.23.45
    下载: 导出CSV

    表  2  水淬型高钛高炉渣XRF分析

    Table  2.   XRF analysis of water quenched high titanium blast furnace slag %

    CaOSiO2TiO2Al2O3MgOSO3Fe2O3
    28.08 26.74 19.65 13.86 7.64 1.05 0.79
    K2O MnO Na2O F BaO SrO ZrO2
    0.72 0.64 0.53 0.17 0.07 0.04 0.02
    下载: 导出CSV
  • [1] Li Junhan, Qiu Kehui, Gong Yinchun. Developments of comprehensive utilization and extraction technology of Ti component form Panzhihua iron and steel co. Ti-bearing blast furnace slag[J]. Sichuan Chemical Industry, 2010,13(2):21−25. (李俊翰, 邱克辉, 龚银春. 攀钢含钛高炉渣中钛组分的提取及综合利用进展[J]. 四川化工, 2010,13(2):21−25. doi: 10.3969/j.issn.1672-4887.2010.02.006
    [2] Liu Yingzhi, Wang Purong, Gou Bingzhong, et al. The process mineralogy of high-titanium blast furnace slag and the technical research on titanium extraction in Panzhihua[J]. Yunnan Metallurgy, 2019,48(6):29−32. (刘应志, 王普蓉, 苟炳中, 等. 攀枝花高钛高炉渣工艺矿物学及提钛技术研究[J]. 云南冶金, 2019,48(6):29−32.
    [3] Gao Yang, Gui Yongliang, Song Chunyang, et al. Present situation and prospect of comprehensive utilization of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2019,(1):6−10. (高洋, 贵永亮, 宋春燕, 等. 高钛高炉渣综合利用现状及展望[J]. 矿产综合利用, 2019,(1):6−10. doi: 10.3969/j.issn.1000-6532.2019.01.002
    [4] Zou Jianxin. Effect of Ti extraction from high ti-bearing blast furnace slag and non-blast furnace ironmaking on comprehensive utilization of Panzhihua V-Ti magnetite[J]. Panzhihua Sci-Tech & Information, 2010,35(3):5−9. (邹建新. 高钛型高炉渣提钛技术与非高炉炼铁技术对攀枝花钒钛磁铁矿综合利用的影响[J]. 攀枝花科技与信息, 2010,35(3):5−9.
    [5] Liu Xianghai, Sun Yonggui. Status quo and development of TiO2 production in China[J]. China Nonferrous Metallurgy, 2018,47(3):43−46. (刘祥海, 孙永贵. 我国钛白粉生产现状和发展探究[J]. 中国有色冶金, 2018,47(3):43−46.
    [6] Wu Jianchun, Wang Bin. Influence of hydrolysis process of titanium sulfate solution on performance of metatitanic acid[J]. Inorganic Chemicals Industry, 2013,45(8):33−35. (吴健春, 王斌. 钛液水解工艺对偏钛酸性能的影响[J]. 无机盐工业, 2013,45(8):33−35. doi: 10.3969/j.issn.1006-4990.2013.08.011
    [7] Xiang Bin, Li Nianbing, Zhang Shengtao, et al. Investigation of the hydrolysis factors of titanyl sulfate[J]. Journal of Southwest China Normal University(Natural Science Edition), 2004,29(2):240−242. (向斌, 李念兵, 张胜涛, 等. 硫酸氧钛水解影响因素的研究[J]. 西南师范大学学报: 自然科学版, 2004,29(2):240−242.
    [8] Grzmil B, Grela D, Kic B. Effects of processing parameters on hydrolysis of TiOSO4[J]. Polish Journal of Chemical Technology, 2009,11(3):15−21. doi: 10.2478/v10026-009-0030-1
    [9] (郝琳. 二氧化钛水解过程的系统研究及优化[D]. 天津: 天津大学, 2006.)

    Hao Lin. Systematic study and optimization of titanium dioxide hydrolysis process[D]. Tianjin: Tianjin University, 2006.
    [10] Liang Huanlong, Zhu Tingjian, Fan Yanjin, et al. Study of preparation of metatitanic acid by hydrolysis of low concentration of titaniferous solution[J]. Nonferrous Metals(Extractive Metallurgy), 2014,(7):25−26. (梁焕龙, 朱挺健, 樊艳金, 等. 低浓度钛液水解制备偏钛酸的研究[J]. 有色金属: 冶炼部分, 2014,(7):25−26.
    [11] Tian Congxue. Effects of hydrolysis conditions on high purity TiO2 preparation from industrial low concentration titanyl sulfate solution[J]. Iron Steel Vanadium Titanium, 2020,41(2):14−19. (田从学. 低浓度工业钛液制备高纯二氧化钛的水解条件研究[J]. 钢铁钒钛, 2020,41(2):14−19.
    [12] Wu Jianchun, Ren Yaping, Lu Ruifang. Influence of boiling state on hydrolysis of titanyl sulfate[J]. Inorganic Chemicals Industry, 2015,47(3):39−41. (吴健春, 任亚平, 路瑞芳. 沸腾状态对硫酸氧钛水解的影响[J]. 无机盐工业, 2015,47(3):39−41.
    [13] 王伟菁. 熔盐法钛白清洁工艺中硫酸氧钛溶液的制备和水解机理的研究[D]. 北京: 中国科学院大学, 2014.

    Wang Weijing. Preparation of titanyl sulfate solution and mechanism of titanium hydrolysis in NaOH roasting method[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2014.
    [14] (陈华. 低浓度工业钛液制备颜料钛白之水解过程及机理研究[D]. 成都: 西华大学, 2015.)

    Chen Hua. Hydrolysis process and fromation mechanism of titanium white pigment production via low concentration of titanyl sulfate solution[D]. Chengdu: Xihua University, 2015.
    [15] Yang Lin, Yi Delian, Wang Cheng, et al. Analysis on stability of titanium sulfate solution and metatitanic acid size control[J]. Inorganic Chemicals Industry, 2015,47(4):26−29. (杨林, 易德莲, 汪成, 等. 硫酸钛液稳定性分析及偏钛酸粒度控制研究[J]. 无机盐工业, 2015,47(4):26−29.
    [16] Zheng Yanqing, Shi Erwei, Chen Zhizhan, et al. Influence of solution concentration on the hydrothermal preparation of titania crystallites[J]. Journal of Materials Chemistry, 2001,11(5):1547−1551. doi: 10.1039/b009203g
    [17] Gerasimova L G, Maslova M V. Hydrothermal behavior of titanium(IV) sulfate solutions[J]. Russian Journal of Inorganic Chemistry, 2012,57(3):313−319. doi: 10.1134/S0036023612030072
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  154
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回