中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频等离子体制备增材制造用球形钛钽合金粉末

应真鸿 谭冲 施麒 李贵发 郑海忠 刘辛

应真鸿, 谭冲, 施麒, 李贵发, 郑海忠, 刘辛. 射频等离子体制备增材制造用球形钛钽合金粉末[J]. 钢铁钒钛, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010
引用本文: 应真鸿, 谭冲, 施麒, 李贵发, 郑海忠, 刘辛. 射频等离子体制备增材制造用球形钛钽合金粉末[J]. 钢铁钒钛, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010
Ying Zhenhong, Tan Chong, Shi Qi, Li Guifa, Zheng Haizhong, Liu Xin. Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010
Citation: Ying Zhenhong, Tan Chong, Shi Qi, Li Guifa, Zheng Haizhong, Liu Xin. Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 64-73. doi: 10.7513/j.issn.1004-7638.2021.03.010

射频等离子体制备增材制造用球形钛钽合金粉末

doi: 10.7513/j.issn.1004-7638.2021.03.010
基金项目: 国家外国专家项目(G20200130024);广东省重点领域研发计划(2018B0909040004-5);广州市重点领域研发计划(202007020008);广州市对外科技合作(201907010030)
详细信息
    作者简介:

    应真鸿(1996—),男,汉,江西南昌人,硕士研究生,主要从事金属粉体制备及其近净成形制造研究,E-mail:804270370@qq.com;

    通讯作者:

    刘辛,男,汉,教授级高级工程师,主要从事金属粉体制备及其近净成形制造研究。E-mail:liuxin@gimp.gd.cn

  • 中图分类号: TF823

Preparation of spherical titanium-tantalum alloy powder for additive manufacturing by radio frequency plasma

  • 摘要: 采用射频等离子体球化技术对氢化破碎不规则形貌的钛钽合金粉末进行球化处理,研究了送粉速率、载气流量和鞘气中氦气流量等工艺参数对钛钽合金粉末球化率、粉体性能和显微结构的影响,并开展了球化后钛钽合金粉末选区激光熔化成形适用性评价。结果表明:经过射频等离子体球化处理后,粉末截面组织由板条状α″-Ti和胞状β-Ti组成,球化率在98%以上,粒度分布变宽,平均粒径由球化前21.41 μm增大至32.3 μm。粉末球化率受送粉速率、载气流量和鞘气中氦气流量等因素影响,当送粉速率为35 g/min,载气流量为5.5 L/min,鞘气中氦气流量为40 L/min,球化效果最好。与原料粉末相比,球化后粉末的霍尔流速(50 g计)为6.27 s,松装密度由1.38 g/cm3提高至3.11 g/cm3,振实密度由2.54 g/cm3提高至3.48 g/cm3。此外,球化后的钛钽合金粉末具有良好的选区激光熔化适用性,成形后制件致密度大于99%,微观组织为针状α″-Ti和胞状β-Ti,钛、钽元素分布均匀,无未熔融的钽颗粒,显微硬度(HV)达到725。
  • 图  1  钛钽合金粉末球化处理前后形貌

    (a)球化前;(b)球化后;(c)球化后粉末截面;(d)球化后粉末开裂缺陷

    Figure  1.  SEM images of titanium-tantalum alloy powder

    图  2  粉末EDS能谱

    (a)扫描电子显微镜图像;(b)钛元素分布;(c)钽元素分布

    Figure  2.  EDS of powders

    图  3  钛钽合金粉末球化前后XRD图谱

    Figure  3.  XRD patterns of titanium-tantalum alloy powder before and after spheroidization

    图  4  钛钽合金粉末球化前后粒度分布

    Figure  4.  Particle size distribution of titanium-tantalum alloy powder before and after spheroidization

    图  5  不同送粉速率下球化钛钽合金粉末的SEM形貌

    Figure  5.  SEM images of titanium-tantalum alloy powder prepared at different powder feeding rates

    (a) 28 g/min; (b) 35 g/min; (c) 42 g/min

    图  6  不同载气流量下球化钛钽合金粉末的SEM形貌

    Figure  6.  SEM images of titanium-tantalum alloy powder prepared at different carrier gas flow rates

    (a) 3.0 L/min; (b) 5.5 L/min; (c) 7.0 L/min

    图  7  不同载气流量下球化钛钽合金粉末的截面组织

    (a) 3.0 L/min;(b) 7.0 L/min;(c) 为(a)的局部区域放大;(d)为(b)的局部区域放大

    Figure  7.  Cross-section microstructure of titanium-tantalum alloy powder prepared at different carrier gas flow rates

    图  8  不同氦气流量下球化钛钽合金粉末的SEM形貌

    Figure  8.  SEM images of titanium-tantalum alloy powder prepared at different sheath gas (He) flow rates

    (a) 0 L/min; (b) 20 L/min; (c) 40 L/min

    图  9  选区激光熔化制备钛钽合金的密度随激光能量密度的变化曲线

    Figure  9.  Relative density of SLM-processed Ti-Ta alloys fabricated by different laser energy densities

    图  10  SLM打印钛钽合金试样的XRD谱图

    Figure  10.  XRD patterns of SLM-processed Ti-Ta alloys

    图  11  SLM打印钛钽合金试样的组织结构

    (a)本试验;(b)其他文献[23]

    Figure  11.  Microstructure of SLM-processed Ti-Ta alloys

    图  12  SLM打印钛钽合金试样的电子显微镜形貌

    Figure  12.  SEM morphology of SLM-processed Ti-Ta alloys

    图  13  打印试样表面EDS能谱

    (a)扫描电镜图像;(b)钽元素分布;(c)钛元素分布

    Figure  13.  EDS of SLM-processed Ti-Ta alloys

    图  14  SLM成形钛钽合金试样的维氏硬度随激光能量密度变化曲线

    Figure  14.  Vickers hardness of SLM processed Ti-Ta alloys fabricated by different laser energy densities

    表  1  原料钛钽合金粉末化学成分

    Table  1.   Chemical composition of raw titanium-tantalum alloy powder %

    TiTaHOC
    Bal.28.242.840.850.024
    下载: 导出CSV

    表  2  射频等离子体球化工艺参数

    Table  2.   Experimental parameters for RF plasma spheroidization

    功率/kW鞘气流量1(Ar)/(L·min−1)鞘气流量2(He)/(L·min−1)载气流量(Ar)/(L·min−1)送粉速率/(g·min−1)
    20~4030~5020~403~728~42
    下载: 导出CSV

    表  3  选区激光熔化成形参数

    Table  3.   SLM process parameters used for this study

    编号激光功率/W扫描速度/(mm·s−1)层厚/μm扫描间距/μm激光能量密度/(J·mm−3)
    1804003060111.11
    21204003060166.66
    31604003060222.22
    480500306088.88
    51205003060133.33
    61605003060177.78
    780600306074.00
    81206003060111.11
    91606003060148.15
    下载: 导出CSV

    表  4  球化后钛钽合金粉末化学成分

    Table  4.   Chemical composition of titanium-tantalum alloy powder after spheroidization %

    TiTaHOC
    Bal.29.622.280.80.024
    下载: 导出CSV

    表  5  钛钽合金粉末球化前后的粉末特征

    Table  5.   Particle characteristics of titanium-tantalum alloy powder before and after spheroidization

    粉末流动性(50 g计)/s松装密度/(g·cm−3)振实密度/(g·cm−3)氧含量/%
    原料粉末1.3752.5420.85
    球化粉末6.273.1133.4780.8
    下载: 导出CSV
  • [1] Niinomi M. Recent metallic materials for biomedical applications[J]. Metallurgical & Materials Transactions A, 2002,33(3):477.
    [2] Laheurte P, Prima F, Eberhardt A, et al. Mechanical properties of low modulus β titanium alloys designed from the electronic approach[J]. J Mech Behav Biomed Mater, 2010,3(8):565−573. doi: 10.1016/j.jmbbm.2010.07.001
    [3] Xu Lijuan, Xiao S L, Tian J, et al. Microstructure, mechanical properties and dry wear resistance of β-type Ti-15Mo-xNb alloys for biomedical applications[J]. Transactions of Nonferrous Metals Society of China, 2013,23(3):692−698. doi: 10.1016/S1003-6326(13)62518-2
    [4] Taekyung, Lee, Yoon-Uk, et al. Microstructure tailoring to enhance strength and ductility in Ti–13Nb–13Zr for biomedical applications[J]. Scripta Materialia, 2013,69(11−12):785−788. doi: 10.1016/j.scriptamat.2013.08.028
    [5] Pokluda J. Theoretical strength of solids: recent results and applications[J]. Materials Science, 2012,47(5):492−495.
    [6] Ying L Z, Niinomi M, Akahori T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications[J]. Mater Sci Eng A, 2004,371(1/2):283−290.
    [7] Zhou Y L, Niinomi M, Akahori T, et al. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications[J]. Materials Science & Engineering A, 2005,398(1−2):28−36.
    [8] Yang Xuechun, Jiang Wenjun, Cao Ming, et al. Organization and mechanical properties of selected laser melting aluminum alloys[J]. Machine Tools and Hydraulics, 2021,49(1):21−25, 41. (杨雪春, 江文俊, 曹铭, 等. 选区激光熔化铝合金的组织和力学性能[J]. 机床与液压, 2021,49(1):21−25, 41. doi: 10.3969/j.issn.1001-3881.2021.01.005
    [9] Sing, Leong S, Yeong, et al. Selective laser melting of titanium alloy with 50 % tantalum: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2016,660(5):263−265.
    [10] Egba B, Aema C, Jef A, et al. Remelt processing and microstructure of selective laser melted Ti25Ta-science direct[J]. Journal of Alloys and Compounds, 2020,820(6):363−366.
    [11] Dz A, Ch B, Yan L A, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting[J]. Journal of Alloys and Compounds, 2019,804:288−298. doi: 10.1016/j.jallcom.2019.06.307
    [12] Gou Y J, Chen G, Zhao S Y, et al. Titanium-tantalum alloy powder produced by the plasma rotating electrode process (PREP)[J]. Key Engineering Materials, 2018,770:18−22. doi: 10.4028/www.scientific.net/KEM.770.18
    [13] Bai L, Fan J, Peng H, et al. RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate[J]. Journal of Alloys & Compounds, 2009,481(1−2):563−567.
    [14] Kumar R, Cheang P, Khor K A. Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders[J]. Biomaterials, 2003,24(15):2611−2621. doi: 10.1016/S0142-9612(03)00066-8
    [15] A Y Y, A M M H, A T W, et al. Effects of feed rate and particle size on the in-flight melting behavior of granulated powders in induction thermal plasmas[J]. Thin Solid Films, 2008,516(19):6622−6627. doi: 10.1016/j.tsf.2007.11.084
    [16] Wang J J, Hao J J, Guo Z M, et al. Preparation of spherical tungsten and titanium powders by RF induction plasma processing[J]. Rare Metals, 2015,34(6):431−435. doi: 10.1007/s12598-014-0293-4
    [17] Jiang X L, Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders[J]. Transactions of Nonferrous Metals Society of China, 2006,16(1):13−17. doi: 10.1016/S1003-6326(06)60003-4
    [18] Gu Zhongtao, Ye Gaoying, Jin Yuping. Component analysis of spherical titanium powder prepared by radio frequency induction plasma[J]. Intense Laser and Particle Beam, 2012,24(6):1409−1413. (古忠涛, 叶高英, 金玉萍. 射频感应等离子体制备球形钛粉的成分分析[J]. 强激光与粒子束, 2012,24(6):1409−1413. doi: 10.3788/HPLPB20122406.1409
    [19] Hou Y B, Zeng K L, Yue-Guang Y U, et al. Plasma spheroidization of tungsten powder[J]. Nonferrous Metals, 2008,(1):41−43.
    [20] Harbec D, Gitzhofer F, Tagnit-Hamou A. Induction plasma synthesis of nanometric spheroidized glass powder for use in cementitious materials[J]. Powder Technology, 2011,214(3):356−364. doi: 10.1016/j.powtec.2011.08.031
    [21] Zhang Ge, Wang Jianhong, Zhang Hao. Study on spheroidization phenomenon of laser melting in selected areas of metal powder[J]. Casting Technology, 2017,38(2):262−265. (张格, 王建宏, 张浩. 金属粉末选区激光熔化球化现象研究[J]. 铸造技术, 2017,38(2):262−265.
    [22] Leong S S, Edith W F, Yee Y W. Selective laser melting of titanium alloy with 50 % tantalum: Effect of laser process parameters on part quality[J]. International Journal of Refractory Metals and Hard Materials, 2018,77:120−127. doi: 10.1016/j.ijrmhm.2018.08.006
    [23] Soro N, Attar H, Brodie E, et al. Evaluation of the mechanical compatibility of additively manufactured porous Ti–25Ta alloy for load-bearing implant applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019,97(3):326−329.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  67
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回