留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-10Mo-28Nb-3Zr-6Ta合金表面纳米氧化管的构建及生长机理分析

许莹 夏朋昭 魏子琰 赵思坛 蔡艳青

许莹, 夏朋昭, 魏子琰, 赵思坛, 蔡艳青. Ti-10Mo-28Nb-3Zr-6Ta合金表面纳米氧化管的构建及生长机理分析[J]. 钢铁钒钛, 2021, 42(3): 74-81. doi: 10.7513/j.issn.1004-7638.2021.03.011
引用本文: 许莹, 夏朋昭, 魏子琰, 赵思坛, 蔡艳青. Ti-10Mo-28Nb-3Zr-6Ta合金表面纳米氧化管的构建及生长机理分析[J]. 钢铁钒钛, 2021, 42(3): 74-81. doi: 10.7513/j.issn.1004-7638.2021.03.011
Xu Ying, Xia Pengzhao, Wei Ziyan, Zhao Sitan, Cai Yanqing. Construction and growth mechanism analysis of nano oxide tubes on Ti-10Mo-28Nb-3Zr-6Ta alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 74-81. doi: 10.7513/j.issn.1004-7638.2021.03.011
Citation: Xu Ying, Xia Pengzhao, Wei Ziyan, Zhao Sitan, Cai Yanqing. Construction and growth mechanism analysis of nano oxide tubes on Ti-10Mo-28Nb-3Zr-6Ta alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 74-81. doi: 10.7513/j.issn.1004-7638.2021.03.011

Ti-10Mo-28Nb-3Zr-6Ta合金表面纳米氧化管的构建及生长机理分析

doi: 10.7513/j.issn.1004-7638.2021.03.011
基金项目: 国家自然科学基金资助项目(51874140);河北省自然科学基金资助(C2018209207)
详细信息
    作者简介:

    许莹(1971—),女,教授,功能金属材料方向,E-mail:xuyingddddd@163.com;

    通讯作者:

    夏朋昭(1996—),男,硕士研究生,功能金属材料方向,E-mail:485056053@qq.com

  • 中图分类号: TF823

Construction and growth mechanism analysis of nano oxide tubes on Ti-10Mo-28Nb-3Zr-6Ta alloy

  • 摘要: 在Ti-10Mo-28Nb-3Zr-6Ta合金表面构建结构致密的纳米氧化管,同时探究纳米氧化管的生长机理。采用阳极氧化法,在含有1 mol/L H3PO4溶液和0.9 % NaF的混合溶液中,在25 V的直流电压下,氧化处理120 min,在Ti-10Mo-28Nb-3Zr-6Ta合金表面原位生成纳米氧化管;使用XRD对纳米氧化管的物相进行分析,进而得到纳米氧化管的成分;使用SEM对纳米氧化管的结构、形貌进行分析;采用HRTEM和EDS等对合金表面的纳米氧化管进行观测进而得出纳米氧化管的生长机理。研究表明:在Ti-10Mo-28Nb-3Zr-6Ta合金表面构建的纳米氧化管孔径为50~70 nm,管壁厚度约为15 nm,氧化管长度为100 nm,纳米管由非晶态的钛氧化物及锐钛矿型二氧化钛纳米晶组成。合金表面纳米氧化管的生长机理为:阳极氧化过程开始时,首先会在合金表面生成一层非晶态的钛的氧化层,而后在氧化电压和电解液作用下,在非晶态钛氧化层之上生成非晶态的纳米管。高温处理后,部分非晶态结构纳米管转化为锐钛矿型二氧化钛纳米晶粒。
  • 图  1  Ti-10Mo-28Nb-3Zr-6Ta合金的显微组织

    Figure  1.  Microstructure of Ti-10Mo-28Nb-3Zr-6Ta alloy

    图  2  Ti-10Mo-28Nb-3Zr-6Ta合金表面纳米管SEM照片

    Figure  2.  SEM images of nanotubes on surface of Ti-10Mo-28Nb-3Zr-6Ta alloy

    图  3  纳米管透射电镜形貌

    Figure  3.  TEM of the nanotubes

    图  4  过渡层电子衍射及能谱

    Figure  4.  Electron diffraction and energy spectrum of the transition layer

    图  5  纳米管电子衍射谱

    Figure  5.  Electron diffraction of nanotube

    图  6  纳米管内壁HRTEM照片及能谱

    Figure  6.  HRTEM and energy spectrum of inner wall of nanotubes

    图  7  纳米管外壁HRTEM照片及能谱

    Figure  7.  HRTEM and energy spectrum of nanotube outer wall

    图  8  纳米管内壁HRTEM放大图

    Figure  8.  HRTEM amplification of the inner wall of nanotubes

    表  1  试验用化学试剂

    Table  1.   Chemical reagents in the experiments

    材料名称分子式纯度生产厂家
    无水乙醇CH3CH2OHAR天津市永大化学试剂有限公司
    硝酸HNO3AR北京化工厂
    氢氟酸HFAR天津市大茂化学试剂厂
    盐酸HCl0.3M北京化工厂
    磷酸H3PO4AR北京化工厂
    氟化钠NaFAR天津市永大化学试剂有限公司
    下载: 导出CSV
  • [1] Fu Tao, Sun Jiamao, Li Shaofeng, et al. Thermally reduced silver micro-nanoparticles on surface of biomedical titanium[J]. Surface Technology, 2017,46(4):191−196. (付涛, 孙嘉懋, 李少峰, 等. 生物医用钛表面热还原银微纳米颗粒研究[J]. 表面技术, 2017,46(4):191−196.
    [2] Hu Yijuan, Bi Yanze, He Donglei, et al. Advances insurface modification of biodegradable magnesium and magnesium alloys[J]. Surface Technology, 2019,48(9):11−19. (胡怡娟, 毕衍泽, 何东磊, 等. 可生物降解镁及镁合金表面改性研究进展[J]. 表面技术, 2019,48(9):11−19.
    [3] (裴轶丰. 多孔钛合金表面镁涂层改性及其成骨效应研究[D]. 西安: 第四军医大学, 2015.)

    Pei Yifeng. A study on the modification of magnesium coating on porous titanium alloy surface and its osteogenic effect[D]. Xi’an: Fourth Military Medical University, 2015.
    [4] Li Dahan, Wang Shujun, Chen Yucheng, et al. Research progress on surface modification technology of Ti6Al7Nb alloy[J]. Titanium Industry Progress, 2019,36(4):43−48. (李达汉, 王树军, 陈宇澄, 等. 基于生物医用Ti6Al7Nb合金表面改性技术的研究进展[J]. 钛工业进展, 2019,36(4):43−48.
    [5] Jin Xudan, Yang Xiaokang, Wei Fenrong, et al. Research progress of medical titanium and titanium alloy surface modification materials and technology[J]. World Nonferrous Metals, 2018,499(7):265−266. (金旭丹, 杨晓康, 魏芬绒, 等. 医用钛及钛合金表面改性材料与技术研究进展[J]. 世界有色金属, 2018,499(7):265−266.
    [6] (夏进阳. TiO2 纳米管表面的掺杂改性及生物活性研究[D]. 武汉: 武汉科技大学, 2013.)

    Xia Jinyang. Study on doping modification and biological activity of TiO2 nanotube surface[D]. Wuhan: Wuhan University of Science and Technology, 2013.
    [7] Cheng Xianxiong, Chen Yuliang, Kong Zhangliang, et al. Preparation and formation process analysis of nanotube TiO2 based on anodic oxidation method[J]. Progress in Chemical Industry, 2020,39(3):1095−1100. (成先雄, 陈于梁, 孔张亮, 等. 基于阳极氧化法的TiO2纳米管制备及生成过程分析[J]. 化工进展, 2020,39(3):1095−1100.
    [8] Qiu Lanxin, Dong Rong, Cai Fanggong, et al. Research progress on preparation and formation mechanism of TiO2 nanotube arrays by anodic oxidation[J]. Electronic Components and Materials, 2019,38(11):1−9. (邱澜鑫, 董荣, 蔡芳共, 等. TiO2纳米管阵列的阳极氧化法制备及形成机理研究进展[J]. 电子元件与材料, 2019,38(11):1−9.
    [9] Lei Xin, Lin Naiming, Zou Jiaojuan, et al. Research progress of micro arc oxidation of aluminum alloys[J]. Surface Technology, 2019,48(12):10−22. (雷欣, 林乃明, 邹娇娟, 等. 铝合金微弧氧化的研究进展[J]. 表面技术, 2019,48(12):10−22.
    [10] (蒲哲. TC4钛合金表面原位生长MoS2/TiO2微弧氧化膜层制备工艺研究[D]. 西安: 长安大学, 2019.)

    Pu Zhe. Preparation of MoS2/TiO2 micro arc oxidation coating on TC4 titanium alloy by in situ growth[D]. Xi’an: Chang’an University, 2019.
    [11] (孙琳超. 纯钛表面微纳米TiO2的制备及其气湿敏性能研究[D]. 南京: 南京航空航天大学, 2019.)

    Sun Linchao. Preparation of micro nano-TiO2 on pure titanium surface and its gas humidity sensing properties[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [12] Moskalewicz T, Kruk A, Kot M, et al. Characterization of microporous oxide layer synthesized on Ti-6Al-7Nb alloy by micro-arc oxidation[J]. Archives of Civil and Mechanical Engineering, 2014,14(3):370−375. doi: 10.1016/j.acme.2013.09.002
    [13] Aniolek K, Kupka M, Uczuk M, et al. Isothermal oxidation of Ti-6Al-7Nb alloy[J]. Vacuum, 2015,114:114−118. doi: 10.1016/j.vacuum.2015.01.016
    [14] Gong Dawei, Grimes Craig A, Oomman K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001,16(12):3331−3334. doi: 10.1557/JMR.2001.0457
    [15] Huang H H, Wu C P, Sun Y S, et al. Improvements in the corrosion resistance and biocompatibility of biomedical Ti-6Al-7Nb alloy using an electrochemical anodization treatment[J]. Thin Solid Films, 2013,528:157−162. doi: 10.1016/j.tsf.2012.08.063
    [16] Liu G H, Du K, Wang K Y. Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization[J]. Applied Surface Science, 2016,388:313−320. doi: 10.1016/j.apsusc.2016.01.010
    [17] Xu Ying, Zhao Sitan, Cai Yanqing, et al. Preparation and properties of Ha/Mo nanotube composite coating by plasma spraying[J]. Surface Technology, 2020,49(7):42−52. (许莹, 赵思坛, 蔡艳青, 等. 等离子喷涂制备Ha/Mo纳米管复合涂层及性能分析[J]. 表面技术, 2020,49(7):42−52.
    [18] Zhu Hongqiang, He Hongyan, Yuan Yuan, et al. Preparation of hierarchical porous structure on Ti surface andbioactivity[J]. Surface Technology, 2015,44(7):56−60. (朱洪强, 何宏燕, 袁媛, 等. 钛基体表面多级孔洞结构的制备和生物活性研究[J]. 表面技术, 2015,44(7):56−60.
    [19] Yang Yujie, Cheng Danhong, Peng Gensheng, et al. Preparation of Ti-based TiO2 nanotubes and advances in biomedical research[J]. Electroplating and Finishing, 2010,(11):22−26. (杨玉洁, 成旦红, 彭根生, 等. 钛基 TiO2 纳米管制备及其生物医用研究进展[J]. 电镀与精饰, 2010,(11):22−26. doi: 10.3969/j.issn.1001-3849.2010.11.007
    [20] Xu Ying, Wang Huanhuan, He Shiyu, et al. Preparation and properties of TiO2 nanotubes[J]. Iron Steel Vanadium Titanium, 2018,39(4):52−57. (许莹, 王欢欢, 何世宇, 等. TiO2 纳米管的制备及其性能研究[J]. 钢铁钒钛, 2018,39(4):52−57. doi: 10.7513/j.issn.1004-7638.2018.04.009
    [21] (王变. 医用钛基金属表面纳米结构的构建及性能研究[D]. 唐山: 华北理工大学, 2018.)

    Wang Bian. Construction and properties of medical titanium based metal surface nanostructures[D]. Tangshan: North China University of Technology, 2018.
    [22] Li Ling, Yao Shenglian, Zhao Xiaoli, et al. Preparation and properties of oxide nanotube arrays on Zr-17Nb alloy surface by anodic oxidation method[J]. Acta Metallurica Sinica, 2019,55(8):1008−1018. (李玲, 姚生莲, 赵晓丽, 等. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019,55(8):1008−1018. doi: 10.11900/0412.1961.2018.00469
    [23] (徐锦诚. 医用钛基记忆合金表面TiO2纳米管阵列的制备及其细胞相容性[D]. 广州: 华南理工大学, 2012.)

    Xu Jincheng. Preparation and cytocompatibility of TiO2 nanotube arrays on medical titanium based memory alloy[D]. Guangzhou: South China University of Technology, 2012.
    [24] (赵伟. 锐钛矿二氧化钛单晶薄膜的制备与表征及器件研究[D]. 济南: 山东大学, 2019.)

    Zhao Wei. Preparation, characterization and device study of anatase titanium dioxide single crystal films[D]. Jinan: Shandong University, 2019.
    [25] (熊锋. 锐钛矿TiO2(001)单晶表面光催化反应机理研究[D]. 合肥: 中国科学技术大学, 2018.)

    Xiong Feng. Study on photocatalytic reaction mechanism of anatase TiO2 (001) single crystal surface[D]. Hefei: University of Science and Technology of China, 2018.
    [26] Zhang Xiaoxing, Dong Xingchen, Chen Qinchuan. Adsorption of SF on anatase (101) crystal face_ 6. Analysis of gas sensing mechanism of components decomposed by partial discharge[J]. Acta Electrotechnics, 2017,32(3):200−209. (张晓星, 董星辰, 陈秦川. 锐钛矿型(101)晶面吸附SF_6局部放电分解组分的气敏机理分析[J]. 电工技术学报, 2017,32(3):200−209.
    [27] Yang Dewei, Yang Peizhi. Research progress of anatase TiO2 thin films[J]. Journal of Yunnan Normal University (Natural Science Edition), 2020,40(2):15−22. (杨德威, 杨培志. 锐钛矿型TiO2薄膜的研究进展[J]. 云南师范大学学报(自然科学版), 2020,40(2):15−22.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  4
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回