留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属铬冶炼及铬收率的影响因素研究

叶明峰 师启华 余彬 陈海军

叶明峰, 师启华, 余彬, 陈海军. 金属铬冶炼及铬收率的影响因素研究[J]. 钢铁钒钛, 2021, 42(3): 105-110. doi: 10.7513/j.issn.1004-7638.2021.03.016
引用本文: 叶明峰, 师启华, 余彬, 陈海军. 金属铬冶炼及铬收率的影响因素研究[J]. 钢铁钒钛, 2021, 42(3): 105-110. doi: 10.7513/j.issn.1004-7638.2021.03.016
Ye Mingfeng, Shi Qihua, Yu Bin, Chen Haijun. Metal chromium preparation and the factors influencing chromium yield[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 105-110. doi: 10.7513/j.issn.1004-7638.2021.03.016
Citation: Ye Mingfeng, Shi Qihua, Yu Bin, Chen Haijun. Metal chromium preparation and the factors influencing chromium yield[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 105-110. doi: 10.7513/j.issn.1004-7638.2021.03.016

金属铬冶炼及铬收率的影响因素研究

doi: 10.7513/j.issn.1004-7638.2021.03.016
详细信息
    作者简介:

    叶明峰(1992—),湖北黄冈人,硕士,工程师,主要从事粉状物料造块及钒铬资源火法冶金方面的研究,E-mail:csuymf@163.com

  • 中图分类号: TF791

Metal chromium preparation and the factors influencing chromium yield

  • 摘要: 研究了攀钢自产高纯三氧化二铬冶炼98级金属铬的配料参数和铬收率的影响因素。结果表明:配加的还原剂金属铝会有一部分进入到产物金属铬中,为确保金属铬成分会间接限制铬收率的提高;金属铬冶炼过程较优的参数为单位炉料热量取值为3150 kJ/kg、配铝系数为0.96;添加氧化钙能显著提高铬元素收率,在CaO/Cr2O3为0.125时,铬收率最高为89.24%。采用攀钢自产高纯三氧化二铬可以冶炼出含V约0.043%的JCr98级金属铬,可满足下游用户的个性化要求。
  • 图  1  铝热法冶炼金属铬流程

    Figure  1.  Process flow of metal chromium by aluminothermic

    图  2  Cr2O3-Al2O3二元相图

    Figure  2.  Phase diagram of Cr2O3-Al2O3

    图  3  Cr2O3-Al2O3-CaO三元相图

    Figure  3.  Phase diagram of Cr2O3-Al2O3-CaO

    图  4  单位炉料热量对元素分配规律的影响

    Figure  4.  Effect of heat per unit charge on element distribution

    图  5  配铝系数对元素分配规律的影响

    Figure  5.  Effect of aluminum addition coefficient on element distribution

    图  6  石灰用量对元素分配规律的影响

    Figure  6.  Effect of CaO/Cr2O3 on element distribution

    图  7  CaO/Cr2O3分别为0.062 5和0.125时的冶炼情况

    Figure  7.  Smelt products with CaO/Cr2O3=0.062 5 and 0.125

    图  8  炉渣成分的三元相图

    Figure  8.  Ternary Phase diagram of slag

    图  9  铝铬渣的微观结构分析

    (a、c为不含氧化钙的铝铬渣的显微照片;b、d为含氧化钙的铝铬渣的显微照片)

    Figure  9.  Microstructure of aluminum chromium slag

    表  1  主要原料和目标产品的化学成分

    Table  1.   Chemical compositions of main raw materials and target products %

    项目Cr2O3TFeSiO2V2O5CrCuSiPSAl
    氧化铬96.85<0.1<0.10.56<0.010.019
    铝粉<0.10.00399.70
    国标JCr98≥98≤0.06≤0.40≤0.01≤0.03≤0.80
    下载: 导出CSV

    表  2  铝铬渣的点成分分析

    Table  2.   Compositions of aluminum chromium slag indicated in Figure 9

    能谱点AlCrOCaNaSi
    c-Spectrum1 0.66 93.83
    c-Spectrum2 57.88 1.39 40.74
    c-Spectrum3 46.92 14.67 37.85
    d-Spectrum1 0.65 98.31
    d-Spectrum2 49.86 1.63 39.09 6.77
    d-Spectrum3 36.09 1.20 36.08 28.56 0.59 1.30
    下载: 导出CSV

    表  3  合格金属铬产品的成分分析

    Table  3.   composition analysis of chromium metal %

    炉次元素成分/%
    CrAlSiSPV
    20200198.240.780.0380.0050.010.031
    20200298.310.510.0250.0040.020.045
    下载: 导出CSV
  • [1] Sun Zhaohui, Yang Yangjun. Smelting metal chromium using aluminothermics[J]. Iron Steel Vanadium Titanium, 1996,17(1):17−21. (孙朝晖, 杨仰军. 铝热法冶炼金属铬[J]. 钢铁钒钛, 1996,17(1):17−21. doi: 10.7513/j.issn.1004-7638.1996.01.004
    [2] Wu Shenchu. Technology for chromium metal production and chrome leach residue processing[J]. Ferroally, 1992,(6):35−37. (吴慎初. 金属铬生产工艺和铬浸出渣治理探讨[J]. 铁合金, 1992,(6):35−37.
    [3] (胡亮, 陈加希, 彭建蓉, 等. 铬资源与先进铬合金[M]. 北京: 化学工业出版社, 2009.)

    Hu Liang, Chen Jiaxi, Peng Jianrong, et al. Chromium resources and advanced chromium metallurgy[M]. Beijing: Chemical Industry Press, 2009.
    [4] Fu Zibi, Jiang Lin, Li Ming, et al. Simultaneous extraction of vanadium and chromium from vanadium chromium slag by calcification[J]. Iron Steel Vanadium Titanium, 2020,41(4):1−6. (付自碧, 蒋霖, 李明, 等. 钒铬渣钙化同步提取钒和铬[J]. 钢铁钒钛, 2020,41(4):1−6.
    [5] Wang Xuewen, Wang Mingyu, Fu Zibi, et al. Present situation and prospect of vanadium and chromium separation in vanadium slag extraction process[J]. Iron Steel Vanadium Titanium, 2017,38(6):1−5. (王学文, 王明玉, 付自碧, 等. 钒渣提钒工艺过程钒铬分离现状及展望[J]. 钢铁钒钛, 2017,38(6):1−5. doi: 10.7513/j.issn.1004-7638.2017.06.001
    [6] (齐天贵. 铬铁矿强氧化焙烧理论与技术研究[D]. 长沙: 中南大学, 2011.)

    Qi Tiangui. Theory and technonlogy for intensified oxidative roasting of chromite ore[D]. Changsha: Central South University, 2011.
    [7] (黄中林. 氢氧化铬的基础及应用研究[D]. 重庆: 重庆大学, 2016.)

    Huang Zhonglin. The investigation of fundamental and applications of chromium hydroxide[D]. Chongqing: Chongqing University, 2016.
    [8] (李彩霞. 钒铬渣制备氢氧化铬的研究[C]//第26届全国铁合金学术研讨会论文集. 北京: 中国金属学会铁合金分会, 2018.)

    Li Caixia. Study on the reparation of chromium hydroxide from vanadium chromium slag[C]//Proceedings of the 26th National Symposium on Ferroalloys. Beijing: Ferroalloy Branch of Chinese Society of Metals, 2018.
    [9] Guo Shuzhi. Improvement on technology to produce low silicon metallic chromium[J]. Ferroalloys, 2013,5:1−6. (郭树志. 改进工艺生产低硅金属铬[J]. 铁合金, 2013,5:1−6. doi: 10.3969/j.issn.1001-1943.2013.01.001
    [10] Huang Yadong. Aluminite powder size and “Double-Nine” chromium metal[J]. Ferroalloys, 1996,(5):17−20. (黄亚东. 铝粉粒度与“双九”金属铬[J]. 铁合金, 1996,(5):17−20.
    [11] Osvaldo Mitsuyuki Cintho, Claudio Parra De Lazzar, José Deodoro Trani Capocchi. Kinetics of the non-isothermal reduction of Cr2O3 with aluminium[J]. ISIJ, 2004,44(5):781−784. doi: 10.2355/isijinternational.44.781
    [12] Holappa L. Toward sustainability in ferroalloys production[C]//The Twelfth International Ferroalloys Congress. Finland: Helsinki, 2010.
    [13] Li Yusuo, Wang Zhiyi, Wang Xuehui. About measures to increase the rate of first class products of metallic chromium with metallothemic process[J]. Ferroalloys, 1999,30(2):10−13. (李玉锁, 王志义, 王雪辉. 提高炉外法金属铬一级品率途径的探讨[J]. 铁合金, 1999,30(2):10−13. doi: 10.3969/j.issn.1001-1943.1999.02.003
    [14] (高振昕. 耐火材料显微结构[M]. 北京: 冶金工业出版社, 2002.)

    Gao Zhenxi. Microstructure of refractories[M]. Beijing: Metallurgical Industry Press, 2002.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  12
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-05
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回