留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化钛颗粒形成过程中原子扩散行为研究

吕亚男 陈栋

吕亚男, 陈栋. 碳化钛颗粒形成过程中原子扩散行为研究[J]. 钢铁钒钛, 2021, 42(3): 143-147. doi: 10.7513/j.issn.1004-7638.2021.03.022
引用本文: 吕亚男, 陈栋. 碳化钛颗粒形成过程中原子扩散行为研究[J]. 钢铁钒钛, 2021, 42(3): 143-147. doi: 10.7513/j.issn.1004-7638.2021.03.022
Lv Yanan, Chen Dong. Diffusional characteristics of atoms during the formation of titanium carbides[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 143-147. doi: 10.7513/j.issn.1004-7638.2021.03.022
Citation: Lv Yanan, Chen Dong. Diffusional characteristics of atoms during the formation of titanium carbides[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 143-147. doi: 10.7513/j.issn.1004-7638.2021.03.022

碳化钛颗粒形成过程中原子扩散行为研究

doi: 10.7513/j.issn.1004-7638.2021.03.022
基金项目: 国家自然科学基金资助项目(编号U1960104);江苏高校“青蓝工程”优秀青年骨干教师项目;苏州工业职业技术学院青年基金项目(编号2020kyjj03)
详细信息
    作者简介:

    吕亚男(1983—),女,博士,主要从事钢铁冶金及金属材料模拟,E-mail:lvyn@siit.edu.cn

  • 中图分类号: TF823

Diffusional characteristics of atoms during the formation of titanium carbides

  • 摘要: 为了明晰金属碳化物沉淀在铁合金中的形成机理,解决宏观试验无法直接研究碳化物沉淀形成初期的局限性,以碳化钛为研究对象,采用分子动力学模拟方法,研究了碳化钛纳米颗粒形成过程中,碳原子和钛原子的扩散行为,考察了碳化钛颗粒形成过程中温度和碳原子浓度对原子扩散的影响规律。研究结果表明,原子的扩散行为对碳化钛颗粒形成起到关键作用。扩散过程中,扩散系数较低的钛原子对碳化钛的形成起决定作用。钛原子和碳原子的扩散能力随温度的提高而增加,但随碳原子浓度的增加而降低。
  • 图  1  碳原子和钛原子分布(Fe-白,Ti-黑,C-红)

    (a) 0 ns;(b) 2 ns

    Figure  1.  Atomic distribution of Ti and C (Fe-white, Ti- black, C-red)

    图  2  1100 K时碳原子和钛原子的位移

    (a) 均方位移值;(b) 扩散系数估量值

    Figure  2.  Diffusion coefficient of C and Ti at 1100 K

    图  3  温度对均方位移值的影响

    Figure  3.  Effect of temperature on the MSD

    图  4  不同温度下碳化钛颗粒中的径向分布函数

    Figure  4.  RDF in TiC cluster at different temperatures

    图  5  C/Ti对MSD(C)和MSD(Ti)的影响

    Figure  5.  MSD of titanium and carbon with the ratio of C/Ti ratio

  • [1] Huo Xiangdong, Xia Jinian, Li Liejun, et al. Research and development of titanium Microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017,38(4):105−112. (霍向东, 夏继年, 李烈军, 等. 钛微合金化高强钢的研究与发展[J]. 钢铁钒钛, 2017,38(4):105−112.
    [2] Xiong Xuegang, Zhang Kaihua, Wang Yi, et al. Influence of vanadium content on austenite recrystallization rule of low carbon steel[J]. Iron Steel Vanadium Titanium, 2019,40(4):121−125. (熊雪刚, 张开华, 王羿, 等. 钒对低碳钢动态再结晶的影响规律研究[J]. 钢铁钒钛, 2019,40(4):121−125.
    [3] Moussaoui I, Roula A, Boufligha S. On transition metals carbides precipitation in alloyed steels[J]. Physica B: Condensed Matter, 2009,404(14−15):2047. doi: 10.1016/j.physb.2009.03.047
    [4] Lee B J, Baskes M I. Second nearest-neighbor modified embedded-atom-method potential[J]. Physical Review B, 2000,62(13):8564. doi: 10.1103/PhysRevB.62.8564
    [5] Chang J, Cai W, Bulatov V V, et al. Molecular dynamics simulations of motion of edge and screw dislocations in a metal[J]. Computational Materials Science, 2002,23(1−4):111. doi: 10.1016/S0927-0256(01)00221-X
    [6] Debye P. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index[J]. Mathematische Annalen, 1909,67(4):535. doi: 10.1007/BF01450097
    [7] Hoover W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985,31(3):1695. doi: 10.1103/PhysRevA.31.1695
    [8] Swope W C, Hans C A, Peter H B, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters[J]. The Journal of Chemical Physics, 1982,76(1):637. doi: 10.1063/1.442716
    [9] Waseda Y. The structure of non-crystalline materials liquids and amorphous solids[M]. New York: McGraw-Hill International Book Company, 1980.
    [10] Kobayashi Y, Takahashi J, Kawakami K. Experimental evaluation of the particle size dependence of the dislocation–particle interaction force in TiC-precipitation-strengthened steel[J]. Scripta Materialia, 2012,67(10):854. doi: 10.1016/j.scriptamat.2012.08.005
    [11] Mecozzi M G, Sietsma J, S van der Zwaag. Analysis of γ→α transformation in α Nb micro-alloyed C-Mn steel by phase field modelling[J]. Acta Materialia, 2006,54(5):1431. doi: 10.1016/j.actamat.2005.11.014
    [12] Fisher D J. Atomistic study of diffusional mass transport in metals[J]. Defect and Diffusion Forum, 2001,188-190:71. doi: 10.4028/www.scientific.net/DDF.188-190.71
    [13] Tapasa K, Barashev A V, Bacon D J, et al. Computer simulation of carbon diffusion and vacancy–carbon interaction in α-iron[J]. Acta Materialia, 2007,55(1):1. doi: 10.1016/j.actamat.2006.05.029
    [14] Wang Xiaonan, Zhao Yanfeng, Liang Bingjie, et al. Study on isothermal precipitation behavior of nano-scale (Nb, Ti)C in ferrite/bainite in 780 MPa grade ultra-high strength steel[J]. Steel Research International, 2013,84(4):402. doi: 10.1002/srin.201200195
    [15] Darve E, Pohorille A. Calculating free energies using average force[J]. The Journal of Chemical Physics, 2001,115(20):9169. doi: 10.1063/1.1410978
    [16] Shapovalov V P, Kurasov A N. Diffusion of titanium in iron[J]. Metal Science and Heat Treatment, 1975,17(9):803. doi: 10.1007/BF00703075
    [17] Kozeschnik E, Svoboda J, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: Numerical solution and application[J]. Materials Science and Engineering: A, 2004,385(1−2):157.
  • 加载中
图(5)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  12
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回