留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同熔覆参数下的AlFeCrCoNiTi高熵合金涂层的高温摩擦磨损性能

崔少伟 王树奇 姜伟 刘喜艳

崔少伟, 王树奇, 姜伟, 刘喜艳. 不同熔覆参数下的AlFeCrCoNiTi高熵合金涂层的高温摩擦磨损性能[J]. 钢铁钒钛, 2021, 42(3): 155-161, 192. doi: 10.7513/j.issn.1004-7638.2021.03.024
引用本文: 崔少伟, 王树奇, 姜伟, 刘喜艳. 不同熔覆参数下的AlFeCrCoNiTi高熵合金涂层的高温摩擦磨损性能[J]. 钢铁钒钛, 2021, 42(3): 155-161, 192. doi: 10.7513/j.issn.1004-7638.2021.03.024
Cui Shaowei, Wang Shuqi, Jiang Wei, Liu Xiyan. High-temperature tribological properties of AlFeCrCoNiTi high-entropy alloy coatings laser cladded with different parameters[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 155-161, 192. doi: 10.7513/j.issn.1004-7638.2021.03.024
Citation: Cui Shaowei, Wang Shuqi, Jiang Wei, Liu Xiyan. High-temperature tribological properties of AlFeCrCoNiTi high-entropy alloy coatings laser cladded with different parameters[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 155-161, 192. doi: 10.7513/j.issn.1004-7638.2021.03.024

不同熔覆参数下的AlFeCrCoNiTi高熵合金涂层的高温摩擦磨损性能

doi: 10.7513/j.issn.1004-7638.2021.03.024
详细信息
  • 中图分类号: TF76,TG174.44

High-temperature tribological properties of AlFeCrCoNiTi high-entropy alloy coatings laser cladded with different parameters

  • 摘要: 选取H13钢进行激光熔覆,获得激光熔覆涂层,并进行了微观组织和硬度分析。采用销—盘式高温磨损试验机研究了H13钢及各个涂层的高温磨损行为。采用SEM、EDS以及XRD等微观分析手段对各个涂层上的磨面进行形貌、成分及物相分析,并探讨磨损机理。结果表明:不论温度的高低与载荷的大小,激光熔覆涂层的磨损量都比H13钢的磨损量低一个数量级。400 ℃下,涂层的磨损失重速度高于涂层的氧化增重速度,因此,涂层整体呈现失重的趋势;600 ℃下,涂层的磨损失重速度低于涂层的氧化增重速度,因此,涂层整体呈现增重的趋势。涂层1具有最好的抗高温软化能力,不论在400 ℃还是600 ℃下摩擦层表面都可以保持完整。涂层2的抗高温软化能力最弱。在400 ℃下,在载荷仅为50 N时就出现摩擦层表面大面积剥落;在600 ℃下,其挤出程度较其他两个摩擦层更为严重。涂层3的抗高温软化能力弱于涂层1的但高于涂层2。在400 ℃,下低载时,摩擦层保持完整,高载时,摩擦层发生大面积剥落;在600 ℃下,其挤出程度较为严重但轻于涂层2。
  • 图  1  激光熔覆涂层的宏观形貌

    Figure  1.  Macro morphology of laser cladding coating

    图  2  熔覆层(a)与结合区(b)的金相图

    Figure  2.  Metallographic diagram of laser cladding layer (a) and interfacial layer (b)

    图  3  激光熔覆涂层的XRD图谱

    Figure  3.  XRD patterns of laser cladding coating

    图  4  H13钢未加涂层与涂层在不同载荷与温度下磨损后质量变化

    Figure  4.  Mass change of H13 cteel with no coating and coatings after wear under different load and temperature

    图  5  摩擦层与未磨损区交界区域的微观形貌

    Figure  5.  Micro morphology of the interface between friction layers and unworn areas

    图  6  各涂层上摩擦层的微观形貌

    Figure  6.  Micro morphology of friction layers on each coating

    图  7  摩擦层边缘的缺口

    Figure  7.  Gap on the edge of the friction layer

    表  1  H13钢的化学成分

    Table  1.   Chemical compositions of H13 steel %

    CSiCrMnVMoSPFe
    0.421.045.150.430.901.45≤0.030≤0.030余量
    下载: 导出CSV

    表  2  合金粉末的化学成分

    Table  2.   Chemical compositions of coating powders %

    AlFeCrCoNiTi
    9.018.617.319.619.615.9
    下载: 导出CSV

    表  3  激光熔覆工艺参数

    Table  3.   Laser cladding process parameters

    参数编号激光功率/W扫描速度/(mm·s−1)光斑直径/mm送粉速度/(g·min−1)搭接率/%气流量/(L·min−1)
    11600548.575010
    21600545.723010
    31600545.725010
    下载: 导出CSV

    表  4  磨损试验参数

    Table  4.   Tribological experiment parameters

    温度/˚C载荷/N力矩/(N·m)转速/(r·min−1)时间/min
    400、60050、100、150550120
    下载: 导出CSV

    表  5  涂层及基体硬度

    Table  5.   Hardness of coating and substrate

    涂层硬度 (HRC)
    退火前熔覆层退火后熔覆层基体
    151.749.324.3
    248.146.323.9
    346.546.122.5
    下载: 导出CSV
  • [1] (李志刚. 热铸模具钢H13表面改性研究[D]. 太原: 太原理工大学, 2008: 1−15.)

    Li Zhigang. Investigation on surface modification of die-casting mould steel H13[D]. Taiyuan: Taiyuan University of Technology, 2008: 1−15.
    [2] Shahram K, Ahmad N. Effect of niobium on microstructure of cast AISI H13 hot work tool steel[J]. Journal of Iron and Steel Research, 2008,15(4):61−66. doi: 10.1016/S1006-706X(08)60145-4
    [3] Liu J, Guan Y, Xia X, et al. Laser cladding of Al0.5CoCrCuFeNiSi high entropy alloy coating without and with yttria addition on H13 steel[J]. Crystals, 2020,10(4):320.
    [4] Liu Lijun, Liu Dayu, Wang Xiaolu, et al. Parameter optimization of laser cladding ceramic repair layer of H13 steel[J]. Transactions of the China Welding Institution, 2020,41(7):65−70. (刘立君, 刘大宇, 王晓陆, 等. H13钢激光熔覆陶瓷修复层的参数优化[J]. 焊接学报, 2020,41(7):65−70.
    [5] Patra Karmakar D, Muvvala G, Nath A K. Effect of scan strategy and heat input on the shear strength of laser cladded Stellite 21 layers on AISI H13 tool steel in as-deposited and heat treated conditions[J]. Surface and Coatings Technology, 2019:384.
    [6] Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021,134:106619.
    [7] Liu H, Li X, Liu J, et al. Microstructural evolution and properties of dual-layer CoCrFeMnTi0.2 high-entropy alloy coating fabricated by laser cladding[J]. Optics & Laser Technology, 2021,134:106646.
    [8] Li Y, Dong S, Liu X, et al. Interface phase evolution during laser cladding of Ni-Cu alloy on nodular cast iron by powder pre-placed method[J]. Optics & Laser Technology, 2021,135(3):106684.
    [9] A. Khalili, M. Mojtahedi, A. Qaderi, et al Effect of pulse laser parameters on the microstructure of the in-situ Fe-TiC hard layer: Simulation and experiment[J]. Optics and Laser Technology, 2021,135:106693.
    [10] J. -M. Wu, S. -J. Lin, J. -W. Yeh, et al Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear, 2006,261(5−6):513−519. doi: 10.1016/j.wear.2005.12.008
    [11] M. -R. Chen, S. -J. Lin, J. -W. Yeh, et al Microstructure and properties of Al0.5CoCrCuFeNiTix (x = 0-2.0) high-entropy alloys[J]. Materials Transactions, 2006,47(5):1395−1401. doi: 10.2320/matertrans.47.1395
    [12] (金冰倩. AlCoCrFeNiSi高熵合金制备与力学性能研究[D]. 沈阳: 沈阳工业大学, 2019.)

    Jin Bingqian, Study on Preparation and Mechanical Properties of AlCoCrFeNiSi High Entropy Alloy[D]. Shenyang: Shenyang University of Technology, 2019.
    [13] (陈明. Al_(0.6)CoCrFeNi高熵合金在不同条件下的摩擦磨损性能[D]. 太原: 太原理工大学, 2019.)

    Chen Ming, Friction and wear properties of Al_(0.6)CoCrFeNi high-entropy alloy under different conditions[D]. Taiyuan: Taiyuan University of Technology, 2019.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  5
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回