留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械零件用含钒压铸铝合金的性能优化

吴刚 刘之强

吴刚, 刘之强. 机械零件用含钒压铸铝合金的性能优化[J]. 钢铁钒钛, 2021, 42(3): 193-198. doi: 10.7513/j.issn.1004-7638.2021.03.029
引用本文: 吴刚, 刘之强. 机械零件用含钒压铸铝合金的性能优化[J]. 钢铁钒钛, 2021, 42(3): 193-198. doi: 10.7513/j.issn.1004-7638.2021.03.029
Wu Gang, Liu Zhiqiang. Performance optimization of die casting aluminum alloy containing vanadium for mechanical parts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 193-198. doi: 10.7513/j.issn.1004-7638.2021.03.029
Citation: Wu Gang, Liu Zhiqiang. Performance optimization of die casting aluminum alloy containing vanadium for mechanical parts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(3): 193-198. doi: 10.7513/j.issn.1004-7638.2021.03.029

机械零件用含钒压铸铝合金的性能优化

doi: 10.7513/j.issn.1004-7638.2021.03.029
基金项目: 辽宁省教育厅科研项目课题,项目编号:w2015263
详细信息
    作者简介:

    吴刚(1969—),男,汉族,辽宁辽阳人,工程学士,副教授,主要研究方向:数控技术、机械设备工艺技术等。E-mail: wangmoubei2997814@163.com。

  • 中图分类号: TF821,TG27

Performance optimization of die casting aluminum alloy containing vanadium for mechanical parts

  • 摘要: 采用不同压射比压和压射速度进行了机械零件用含钒压铸铝合金Al-10Si-2.5Cu-0.3V的压铸试验,并进行了合金力学性能和耐磨损性能的测试与分析。结果表明:随压射比压由650 MPa增大到750 MPa、压射速度从250 mm/s加快到450 mm/s时,合金的力学性能和耐磨损性能均先提高后下降。合金的压射比压优选725 MPa、压射速度优选350 mm/s。与压射比压650 MPa相比,当压射比压增加到725 MPa时合金的抗拉强度增大18 MPa、断后伸长率减小0.6%、磨损体积减小8×10−3 mm3。与压射速度450 mm/s相比,当压射速度为350 mm/s时合金的抗拉强度增大20 MPa、断后伸长率减小0.7%、磨损体积减小了10×10−3 mm3
  • 图  1  拉伸试样尺寸

    Figure  1.  Dimensions of tensile specimens

    图  2  不同压射比压时试样的力学性能测试结果

    Figure  2.  Tensile test results of the specimens at different injection pressures

    图  3  试样拉伸断口形貌

    Figure  3.  Tensile fracture morphology of the specimens

    图  4  不同压射速度时试样的力学性能测试结果

    Figure  4.  Tensile test results of the specimens at different injection speeds

    图  5  不同压射比压时试样的耐磨损性能测试结果

    Figure  5.  Wear test results of the specimens at different injection pressures

    图  6  不同压射速度时试样的耐磨损性能测试结果

    Figure  6.  Wear test results of the specimens at different injection speeds

    表  1  合金试样化学成分

    Table  1.   Chemical compositions of the alloy specimens %

    试样SiCuVMgFeMnNiZnAl
    1 10.124 2.489 0.291 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    2 10.126 2.486 0.293 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    3 10.123 2.487 0.292 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    4 10.122 2.485 0.294 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    5 10.125 2.489 0.291 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    6 10.124 2.486 0.293 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    7 10.127 2.486 0.292 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    8 10.125 2.488 0.294 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    9 10.123 2.485 0.292 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    10(对比试样) 10.124 2.487 0 <0.2 <0.6 <0.3 <0.3 <0.6 Bal.
    下载: 导出CSV

    表  2  试样压铸工艺参数

    Table  2.   Die casting process parameters of the specimens

    试样编号压射比压/
    MPa
    压射速度/
    (mm·s−1
    快压速度/
    (m·s−1
    浇注温度/
    1 650 350 8 635
    2 675 350 8 635
    3 700 350 8 635
    4 725 350 8 635
    5 750 350 8 635
    6 725 250 8 635
    7 725 300 8 635
    8 725 400 8 635
    9 725 450 8 635
    10(对比试样) 725 350 8 635
    下载: 导出CSV

    表  3  添加钒对合金性能的影响

    Table  3.   The result show the effect of vanadium addition on mechanical properties of alloy

    试样编号抗拉强度/MPa断后伸长率/%磨损体积/mm3
    42561.513×10−3
    10(对比试样)235124×10−3
    下载: 导出CSV
  • [1] Liang Wenbo. Analysis and research on the way to improve the machining efficiency of aluminum alloy[J]. China Metal Bulletin, 2019,(2):167−168. (梁文波. 铝合金机械加工效率的提升方式分析与研究[J]. 中国金属通报, 2019,(2):167−168. doi: 10.3969/j.issn.1672-1667.2019.02.103
    [2] Qian Chunhua, Cui Haitao, Gao Chao, et al. Study on thermo-mechanical fatigue behavior of E319 cast aluminum alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2019,38(4):634−638. (钱春华, 崔海涛, 高超, 等. E319铸铝合金热机械疲劳行为研究[J]. 机械科学与技术, 2019,38(4):634−638.
    [3] Dong Xianming, Jian Chao. Present status and prospect of aluminum alloy die casting standards[J]. Foundry, 2017,66(10):1122−1124. (董显明, 蹇超. 铝合金压铸标准现状及展望[J]. 铸造, 2017,66(10):1122−1124. doi: 10.3969/j.issn.1001-4977.2017.10.020
    [4] Zhang Zhiqiang, Zhang Xiaokai, He Dongye. Study on machining technology of aluminum alloy materials[J]. Forging & Stamping Technology, 2018,43(12):16−19. (张志强, 张晓凯, 何东野. 6016铝合金热冲压数值模拟研究[J]. 锻压技术, 2018,43(12):16−19.
    [5] Zhao Ertuan, Tian Yujing, Sun Shichen, et al. Optimization of permanent casting process for aluminum alloy combined shell[J]. Special Casting & Nonferrous Alloys, 2018,38(12):1317−1320. (赵而团, 田玉晶, 孙世臣, 等. 铝合金组合壳体铸件的金属型铸造工艺优化[J]. 特种铸造及有色合金, 2018,38(12):1317−1320.
    [6] Zhang Junchao, Zhong Gu, Zou Chun, et al. Research progress of the high Vacuum die-casting aluminum alloys[J]. Materials Review, 2018,32(z2):375−378. (张俊超, 钟鼓, 邹纯, 等. 高真空压铸铝合金的研究进展[J]. 材料导报, 2018,32(z2):375−378.
    [7] Tan Lin. The influence of low pressure casting parameters on the mechanical properties of aluminum alloy wheels was studied China venture capita[J]. China Science and Technology Investment, 2017,(36):313. (覃琳. 关于低压铸造参数对铝合金车轮机械性能的影响研究[J]. 中国科技投资, 2017,(36):313. doi: 10.3969/j.issn.1673-5811.2017.36.272
    [8] Ni Hongjun, Chen Ke, Zhang Fubao, et al. Research status and prospect on die-casting aluminum alloy[J]. Light Metals, 2019,(3):51−55. (倪红军, 陈科, 张福豹, 等. 压铸铝合金研究现状及展望[J]. 轻金属, 2019,(3):51−55.
    [9] Guo Lianjin, Jin Linkui, Meng Xinpei, et al. Failure analysis on early cracking of die-casting mold for NOS425 steel-aluminum alloy[J]. Forging & Stamping Technology, 2019,44(8):129−136. (郭联金, 金林奎, 孟鑫沛, 等. NOS425钢铝合金压铸模早期开裂失效分析[J]. 锻压技术, 2019,44(8):129−136.
    [10] Jing Han. Reaction kinetics of vanadium-aluminum alloy preparation by thermite method[J]. Iron Steel Vanadium Titanium, 2017,38(4):40−43. (景涵. 铝热法制备钒铝合金的动力学研究[J]. 钢铁钒钛, 2017,38(4):40−43. doi: 10.7513/j.issn.1004-7638.2017.04.008
    [11] Li Jianbing. Summary on the process of producing vanadium-aluminum alloy[J]. Ferro-Alloys, 2017,48(6):13−15. (李建兵. 钒铝合金的生产方法综述[J]. 铁合金, 2017,48(6):13−15.
    [12] Hu Zhankui, Ke Shanshan. Influence of V content on microstructure and properties of 3102 aluminum alloy[J]. Aluminium Fabrication, 2017,(1):4−9. (胡展奎, 柯珊珊. 钒含量对3102铝合金组织及性能的影响[J]. 铝加工, 2017,(1):4−9. doi: 10.3969/j.issn.1005-4898.2017.01.01
    [13] Wang Chaowen, Lin Chong, Wu Hebao, et al. Effects of V on microstructure and mechanical properties of A380 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2019,39(5):552−555. (王朝闻, 林冲, 吴和保, 等. V对A380铝合金显微组织和力学性能的影响[J]. 特种铸造及有色合金, 2019,39(5):552−555.
    [14] Liu Hai’e, Zhang Jianchao. High temperature properties of cast Al-Si-V aluminum alloy for mechanical parts[J]. Hot Working Technology, 2019,48(1):103−105. (刘海娥, 张建超. 机械零件用铸造Al-Si-V铝合金的高温性能[J]. 热加工工艺, 2019,48(1):103−105.
    [15] Liu Lu, Chen Jianghua, Xia Shenlin, et al. Effect of element V on microstructure and mechanical properties of 2519 alloy[J]. Transactions of Materials and Heat Treatment, 2014,35(4):78−83. (刘路, 陈江华, 夏申琳, 等. V元素对2519铝合金组织与力学性能的影响[J]. 材料热处理学报, 2014,35(4):78−83.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  6
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-22
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回