留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tb改性BiVO4/BiOCl复合光催化剂的制备及性能研究

刘景景 张泽兰 赵 伟

刘景景, 张泽兰, 赵 伟. Tb改性BiVO4/BiOCl复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2021, 42(4): 39-46. doi: 10.7513/j.issn.1004-7638.2021.04.007
引用本文: 刘景景, 张泽兰, 赵 伟. Tb改性BiVO4/BiOCl复合光催化剂的制备及性能研究[J]. 钢铁钒钛, 2021, 42(4): 39-46. doi: 10.7513/j.issn.1004-7638.2021.04.007
Liu Jingjing, Zhang Zelan, Zhao Wei. Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 39-46. doi: 10.7513/j.issn.1004-7638.2021.04.007
Citation: Liu Jingjing, Zhang Zelan, Zhao Wei. Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 39-46. doi: 10.7513/j.issn.1004-7638.2021.04.007

Tb改性BiVO4/BiOCl复合光催化剂的制备及性能研究

doi: 10.7513/j.issn.1004-7638.2021.04.007
基金项目: 四川省大学生创新创业训练计划项目(其他);攀枝花学院大学生创新创业训练计划项目(其他)
详细信息
    作者简介:

    刘景景(1986−),女,河南三门峡人,讲师,博士,主要从事功能材料研究,Email:jingjingliu8610@163.com。

  • 中图分类号: TF841.3, TQ426

Synthesis and properties of Tb modified BiVO4/BiOCl composite photocatalysts

  • 摘要: 采用液相沉淀法制备了不同Tb含量的BiVO4/BiOCl复合光催化剂,利用XRD、EDS等对催化剂进行了表征。以罗丹明B为目标降解污染物,采用单因素试验研究了Tb含量、光催化时间、催化剂用量、罗丹明B浓度等因素对样品光降解率的影响,并采用正交试验确定出最优方案。结果表明,纯钒酸铋为单斜晶型BiVO4;Tb含量为2%、4%的样品是单斜BiVO4/BiOCl混合相;Tb含量为6%~12%的样品是单斜相BiVO4/四方相BiVO4/BiOCl混合相,这说明引入稀土Tb能够促使BiVO4由单斜相转化为四方相。与纯BiVO4相比,所有含Tb的BiVO4样品的光降解率显著提高,且Tb元素的最佳含量(摩尔分数)为10%。在罗丹明B浓度为5 mg/L,催化剂用量为25 mg,光催化时间为2 h时,10%样品的光降解率高达100%,其光催化性能提高的原因可归因于稀土Tb的电子捕获效应以及形成的单斜相BiVO4/四方相BiVO4/BiOCl混相p-n异质结,有效提高了光生载流子的分离与传输,大大降低了电子-空穴对的复合,在污染废水处理方面具有极大的潜力和应用价值。
  • 图  1  不同Tb含量改性的BiVO4样品的XRD谱

    Figure  1.  XRD patterns of BiVO4 samples with different Tb contents

    图  2  10% Tb含量的BiVO4样品的EDS谱

    Figure  2.  EDS spectrum of BiVO4 sample with 10% Tb

    图  3  不同Tb含量BiVO4样品对15 mg/L罗丹明B溶液光催化1 h的降解率

    Figure  3.  The photodegradation ratio of 15 mg/L rhodamine B solution by the BiVO4 samples with different Tb contents for 1 h

    图  4  Tb含量为10%的样品对15 mg/L罗丹明B溶液在不同光催化时间的降解率

    Figure  4.  The photodegradation ratio of 15mg/L rhodamine B solution by the BiVO4 samples with 10% Tb for different irradiation time

    图  5  不同用量的Tb含量为10%的样品对15 mg/L罗丹明B溶液光催化1.5 h的降解率

    Figure  5.  The photodegradation ratio of 15mg/L rhodamine B solution by different dosages of BiVO4 with 10% Tb for 1.5 h

    图  6  Tb含量为10%的样品对不同浓度罗丹明B溶液光催化1.5 h的降解率

    Figure  6.  The photodegradation ratio of rhodamine B solutions with different concentrations by BiVO4 sample with 10 % Tb for 1.5 h

    表  1  正交试验因素及水平

    Table  1.   Orthogonal test factors and levels

    水平因素A:
    罗丹明B
    浓度/(mg·L−1
    因素B:
    催化剂
    用量/mg
    因素C:
    光催化
    时间/h
    15152.0
    210201.5
    315101.0
    420250.5
    下载: 导出CSV

    表  2  L16(45)正交试验方案及结果

    Table  2.   L16 (45) orthogonal test schemes and results

    试验号因素A因素B空列因素C空列降解率/%
    11(5)1(15)11(2.0)199.16
    21(5)2(20)22(1.5)298.73
    31(5)3(10)33(1.0)398.20
    41(5)4(25)44(0.5)497.03
    52(10)1(15)23(1.0)478.37
    62(10)2(20)14(0.5)369.03
    72(10)3(10)41(2.0)289.32
    82(10)4(25)32(1.5)199.32
    93(15)1(15)34(0.5)239.88
    103(15)2(20)43(1.0)193.72
    113(15)3(10)12(1.5)471.56
    123(15)4(25)21(2.0)399.07
    134(20)1(15)42(1.5)387.19
    144(20)2(20)31(2.0)496.63
    154(20)3(10)24(0.5)126.23
    164(20)4(25)13(1.0)274.85
    k10.980.760.790.960.80
    k20.840.900.760.890.76
    k30.760.710.840.860.88
    k40.710.930.920.580.86
    R0.270.210.160.380.13
    下载: 导出CSV
  • [1] Kudo A, Ueda H K, Mikami I. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998,53(3−4):229−230.
    [2] Monfort O, Plesch Gustav. Bismuth vanadate-based semiconductor photocatalysts: A short critical review on the efficiency and the mechanism of photodegradation of organic pollutants[J]. Environmental Science and Pollution Research, 2018,25:19362−19379. doi: 10.1007/s11356-018-2437-9
    [3] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J]. Journal of the American Chemical Society, 1999,121(49):11459−11467. doi: 10.1021/ja992541y
    [4] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties[J]. Chemistry of Materials, 2001,13(12):4624−4628. doi: 10.1021/cm0103390
    [5] Zhu Z, Yang C X, Hwang Y T, et al. Fuel generation through photoreduction of CO2 on novel Cu/BiVO4[J]. Materials Research Bulletin, 2020,130:110955. doi: 10.1016/j.materresbull.2020.110955
    [6] Tayebi M, Lee B K. The effects of W/Mo-co-doped BiVO4 photoanodes for improving photoelectrochemical water splitting performance[J]. Catalysis Today, 2021,361:183−190. doi: 10.1016/j.cattod.2020.03.066
    [7] Wang L Y, Bian Z Y. Photocatalytic degradation of paracetamol on Pd-BiVO4 under visible light irradiation[J]. Chemosphere, 2020,239:124815. doi: 10.1016/j.chemosphere.2019.124815
    [8] Li Z L, Jin C Y, Wang M, et al. Novel rugby-like g-C3N4/BiVO4 core/shell Z-scheme composites prepared via low-temperature hydrothermal method for enhanced photocatalytic performance[J]. Separation and Purification Technology, 2020,232:115937. doi: 10.1016/j.seppur.2019.115937
    [9] Wang Y L, Yu D, Wang W, et al. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity[J]. Separation and Purification Technology, 2020,239:116562. doi: 10.1016/j.seppur.2020.116562
    [10] (王敏, 朱彤, 吕春梅. 钒酸铋光催化剂及其应用[M]. 北京: 化学工业出版社, 2017.)

    Wang Min, Zhu Tong, Lv Chunmei. BiVO4 photocatalytic and application[M]. Beijing: Chemical Industy Press, 2017.
    [11] Xu H, Wu C D. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J]. Applied Surface Science, 2009,256:597−602. doi: 10.1016/j.apsusc.2009.05.102
    [12] Luo Y Y, Tan G Q, Dong G H, et al. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light[J]. Applied Surface Science, 2016,364:156−165. doi: 10.1016/j.apsusc.2015.12.100
    [13] Orona-Návar C, Levchuk I, Moreno-Andrés J, et al. Removal of pharmaceutically active compounds (PhACs) and bacteria inactivation from urban wastewater effluents by UVA-LED photocatalysis with Gd3+ doped BiVO4[J]. Journal of Environmental Chemical Engineering, 2020,8(6):104540. doi: 10.1016/j.jece.2020.104540
    [14] Zhang Aiping, Zhang Jinzhi. Synthesis and activities of Ln-doped BiVO4(Ln=Eu, Gd and Er) photocatalysts[J]. Chinese Journal of Inorganic Chemistry, 2009,25(11):2040−2047. (张爱平, 张进治. Ln掺杂BiVO4(Ln=Eu、Gd、Er)光催化剂的制备和活性研究[J]. 无机化学学报, 2009,25(11):2040−2047. doi: 10.3321/j.issn:1001-4861.2009.11.027
    [15] Zhang A P, Zhang J Z. Effects of europium doping on the photocatalytic behavior of BiVO4[J]. Journal of Hazardous Materials, 2010,173:265−272. doi: 10.1016/j.jhazmat.2009.08.079
    [16] Pei Z Z, Jia H, Zhang Y L, et al. A one-pot hydrothermal synthesis of Eu/BiVO4 enhanced visible-light-driven photocatalyst for degradation of tetracycline[J]. Journal of Nanoscience and Nanotechnology, 2020,20:3053−3059. doi: 10.1166/jnn.2020.17446
    [17] Liao Rui, Huang Heyan, Li Yuanli, et al. Preparation, crystal structure and spectral properties of bismuth vanadate nanocrystals doped with rare earth ions[J]. Journal of the Chinese Ceramic Society, 2020,48(5):739−744. (廖蕊, 黄鹤燕, 李园利, 等. 稀土离子掺杂钒酸铋纳米晶的制备、晶体结构特征及光谱性质[J]. 硅酸盐学报, 2020,48(5):739−744.
    [18] Luo Y Y, Tan G Q, Dong G H, et al. Effects of structure, morphology, and up-conversion on Nd-doped BiVO4 system with high photocatalytic activity[J]. Ceramics International, 2015,41(2):3259−3268. doi: 10.1016/j.ceramint.2014.11.016
    [19] Monfort O, Sfaelou S, Satrapinskyy L, et al. Comparative study between pristine and Nb-modified BiVO4 films employed for photoelectrocatalytic production of H2 by water splitting and for photocatalytic degradation of organic pollutants under simulated solar light[J]. Catalysis Today, 2017,280:51−57. doi: 10.1016/j.cattod.2016.07.006
    [20] Wang Weixuan, Chen Ruizhi, Wu Ping, et al. Photocatalytic properties of Nd3+-doped heterojunction ms/tz-BiVO4 under visible light[J]. Inorganic Chemicals Industry, 2018,50(2):75−78, 82. (王伟玄, 陈睿智, 伍平, 等. Nd3+掺杂ms/tz-BiVO4可见光催化性能研究[J]. 无机盐工业, 2018,50(2):75−78, 82.
    [21] Chen R Z, Wang W X, Jiang D M, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance[J]. Journal of Physics and Chemistry of Solids, 2018,117:28−35. doi: 10.1016/j.jpcs.2018.02.010
    [22] Xu Jingwei, Li Zheng, Wang Zepu, et al. Morphology and photocatalytic performance regulation of Nd3+-doped BiVO4 with staggered band structure[J]. Journal of Inorganic Materials, 2020,35(7):789−795. (徐晶威, 李政, 王泽普, 等. 交错能带结构钕掺杂钒酸铋形貌与光催化性能调控[J]. 无机材料学报, 2020,35(7):789−795.
    [23] Wetchakun N, Chaiwichain S, Inceesungvorn B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2012,4(7):3718−3723.
    [24] Xu J, Wang W Z, Wang J, et al. Controlled fabrication and enhanced photocatalystic performance of BiVO4@CeO2 hollow microspheres for the visible-light-driven degradation of rhodamine B[J]. Applied Surface Science, 2015,349:529−537. doi: 10.1016/j.apsusc.2015.04.195
    [25] Gu S N, Li W J, Wang F Z, et al. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015,170-171:186−194. doi: 10.1016/j.apcatb.2015.01.044
    [26] Gu S N, Li W J, Wang F Z, et al. Substitution of Ce(III, IV) ions for Bi in BiVO4 and its enhanced impact on visible light-driven photocatalytic activities[J]. Catalysis Science & Technology, 2016,6:1870−1881.
    [27] (曹保卫. 钒酸铋基半导体光催化剂的水热合成光催化性能研究[D]. 西安: 西安建筑科技大学, 2014.)

    Cao Baowei. Controllable synthesis and photocatalytic activitiea research of bismuth vanadate[D]. Xi, an: Xi,an University of Science and Technology, 2014.
    [28] Luo Y Y, Tan G Q, Dong G H, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light[J]. Applied Surface Science, 2015,324:505−511. doi: 10.1016/j.apsusc.2014.10.168
    [29] Zhu S W, Li Q G, Huttula M, et al. One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity[J]. Journal of Materials Science, 2017,52:1679−1693. doi: 10.1007/s10853-016-0460-0
    [30] Gu S N, Li W J, Bian Y Z, et al. Highly-visible-light photocatalytic performance derived from a lanthanide self-redox cycle in Ln2O3/BiVO4 (Ln: Sm, Eu, Tb) redox heterojunction[J]. The Journal of Physical Chemistry C, 2016,120(34):19242−19251. doi: 10.1021/acs.jpcc.6b06436
    [31] Wang Y, Liu F Y, Hu Y J, et al. Microwave synthesis and photocatalytic activity of Tb3+ doped BiVO4 microcrystals[J]. Journal of Colloid and Interface Science, 2016,483:307−313. doi: 10.1016/j.jcis.2016.08.048
    [32] Ma X M, Ma Z, Liao T, et al. Preparation of BiVO4/BiOCl heterojunction photocatalyst by in-situ transformation method for norfloxacin photocatalytic degradation[J]. Journal of Alloys and Compounds, 2017,702:68−74. doi: 10.1016/j.jallcom.2017.01.214
    [33] Song L J, Pang Y Y, Zheng Y J, et al. Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method[J]. Journal of Alloys and Compounds, 2017,710:375−382. doi: 10.1016/j.jallcom.2017.03.283
    [34] Liu Jingjing. Preparation and performance of manganese dioxide/bismuth vanadate composite photocatalysts[J]. Chemical Research and Application, 2019,31(4):644−651. (刘景景. 二氧化锰/钒酸铋复合光催化剂的制备及性能[J]. 化学研究与应用, 2019,31(4):644−651. doi: 10.3969/j.issn.1004-1656.2019.04.009
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  85
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回