留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硝酸体系制备缺陷态二氧化钛纳米材料及其在光催化中的应用

刘进 王丽 周华 赵辉

刘进, 王丽, 周华, 赵辉. 硝酸体系制备缺陷态二氧化钛纳米材料及其在光催化中的应用[J]. 钢铁钒钛, 2021, 42(4): 52-56. doi: 10.7513/j.issn.1004-7638.2021.04.009
引用本文: 刘进, 王丽, 周华, 赵辉. 硝酸体系制备缺陷态二氧化钛纳米材料及其在光催化中的应用[J]. 钢铁钒钛, 2021, 42(4): 52-56. doi: 10.7513/j.issn.1004-7638.2021.04.009
Liu Jin, Wang Li, Zhou Hua, Zhao Hui. Synthesis of defective titanium dioxide nanomaterial in nitric acid system and its application in photocatalysis[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 52-56. doi: 10.7513/j.issn.1004-7638.2021.04.009
Citation: Liu Jin, Wang Li, Zhou Hua, Zhao Hui. Synthesis of defective titanium dioxide nanomaterial in nitric acid system and its application in photocatalysis[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 52-56. doi: 10.7513/j.issn.1004-7638.2021.04.009

硝酸体系制备缺陷态二氧化钛纳米材料及其在光催化中的应用

doi: 10.7513/j.issn.1004-7638.2021.04.009
基金项目: 河南省科技攻关项目(212102210243,212102310507);开封市科技攻关项目(2101002,2101003);河南省高等学校重点科研项目(21B430010,21A480007)
详细信息
    作者简介:

    刘进(1979−),男,河南开封人,工学博士,高级工程师,通讯作者,主要研究方向:新能源材料,E-mail:liujin9931@qq.com。

  • 中图分类号: TF823,TQ426

Synthesis of defective titanium dioxide nanomaterial in nitric acid system and its application in photocatalysis

  • 摘要: 以硝酸为形貌控制剂,采用溶胶凝胶法制备TiO2纳米材料。所获得的TiO2纳米材料为锐钛矿型,并具有缺陷态结构,粒径保持在5 nm以下。制备过程中,材料中晶体的生长遵循定向附着(Oriented attachment,OA)机制。将该锐钛矿型TiO2材料应用于亚甲基蓝的光催化降解中,实现了95%的催化降解效果,表现出较好的光催化性能。该工艺过程简单,制备中未使用高温工艺,非常易于工业化生产,为TiO2纳米光催化材料的低成本制备提供了一条简便的技术路径。
  • 图  1  TiO2纳米材料XRD谱

    Figure  1.  XRD pattern of TiO2 nanomaterial

    图  2  TiO2纳米材料的扫描电镜形貌

    (a)、(b)、(c)、(d)分别为产物TiO2材料放大3 000、8 000、20 000和40 000倍率形貌

    Figure  2.  SEM images of TiO2 nanomaterial

    图  3  TiO2纳米材料的透射电镜形貌

    (a)产物TiO2低倍TEM;(b)产物TiO2晶面测量;(c)左上和右上为晶态区域傅里叶变换图;左下和右下为所选晶态区域中存在的位错缺陷分析;(d)图中白色椭圆标识位置为晶界局部放大

    Figure  3.  TEM images of TiO2 nanomaterials

    图  4  缺陷态TiO2在模拟光下分解亚甲基蓝脱色率

    Figure  4.  Decolorization rate of methylene blue decomposed by defective TiO2 under simulated light

    图  5  基于定向附着机理的纳米晶体生长示意(图示为不同暴露面TiO2材料小晶粒)[9]

    Figure  5.  Schematic diagram of nanocrystal growth based on the OA mechanism (the picture shows the small crystal grains of TiO2 material on different exposed surfaces) [9]

    表  1  由Scherrer公式计算的TiO2粒径

    Table  1.   TiO2 particle size calculated by Scherrer formula

    峰位(2θ 峰半高宽β/(°) 晶粒尺寸D/nm
    25.354(101) 2.238 3.6
    36.884(103) 2.039 4.07
    48.077(200) 2.075 4.15
    下载: 导出CSV
  • [1] Wu Jinming, Xing Huan. Facet-dependent decoration of TiO2 mesocrystals on TiO2 microcrystals for enhanced photoactivity[J]. Nanotechnology, 2020,31(2):025604. doi: 10.1088/1361-6528/ab4778
    [2] Wang Guanyu, Guo Weijie, Xu Deping, et al. Graphene oxide hybridised TiO2 for visible light photocatalytic degradation of phenol[J]. Symmetry, 2020,12(9):1420. doi: 10.3390/sym12091420
    [3] Tong Youjie, Fang Siyuan, Wang Chunling, et al. A unique black TiO2 created from CO-induced oxidation of defect-rich TiO2[J]. Journal of Physics and Chemistry of Solids, 2021:110053.
    [4] Wen Puhong, Yoshie Ishikawa, Hiroshi Itoh, et al. Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals[J]. Journal of Physical Chemistry C, 2009,113(47):20275−20280. doi: 10.1021/jp908181e
    [5] Wu Binghui, Guo Changyou, Zheng Nanfeng, et al. Nonaqueous production of nanostructured anatase with high-energy facets[J]. Journal of the American Chemical Society, 2008,130(51):17563−17567. doi: 10.1021/ja8069715
    [6] Wu Qingping, Huang Feng, Zhao Mingshi, et al. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production[J]. Nano Energy, 2016,24:63−71. doi: 10.1016/j.nanoen.2016.04.004
    [7] Huang Feng, Zhang Hengzhong, Banfield Jillian F. The role of oriented attachment crystal growth in hydrothermal coarsening of nanocrystalline ZnS[J]. J. Phys. Chem. B, 2003,107(38):10470−10475. doi: 10.1021/jp035518e
    [8] (杨伟光. 暴露不同高表面能晶面的锐钛矿TiO2的控制合成及性能研究[D]. 上海: 上海大学, 2012: 3.)

    Yang Weiguang. Controlled synthesis and properties of anatase TiO2 exposed to different high surface energy crystal planes[D]. Shanghai: Shanghai University, 2012: 3.
    [9] Zhang Jing, Huang Feng, Zhang Lin. Progress of nanocrystalline growth kinetics based on oriented attachment[J]. Nanoscale, 2010,2(l):18−34.
    [10] Abdelkrim Chemseddine, Thomas Moritz. Nanostructuring titania: Control over nanocrystal structure, size, shape, andorganization[J]. European Journal of Inorganic Chemistry, 1999,2:235−245.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  19
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回