留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒微合金化对汽车零部件用钢性能的影响

马骊歌 李显生

马骊歌, 李显生. 钒微合金化对汽车零部件用钢性能的影响[J]. 钢铁钒钛, 2021, 42(4): 68-72. doi: 10.7513/j.issn.1004-7638.2021.04.012
引用本文: 马骊歌, 李显生. 钒微合金化对汽车零部件用钢性能的影响[J]. 钢铁钒钛, 2021, 42(4): 68-72. doi: 10.7513/j.issn.1004-7638.2021.04.012
Ma Lige, Li Xiansheng. Effect of vanadium microalloying on properties of steel for automobile parts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 68-72. doi: 10.7513/j.issn.1004-7638.2021.04.012
Citation: Ma Lige, Li Xiansheng. Effect of vanadium microalloying on properties of steel for automobile parts[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 68-72. doi: 10.7513/j.issn.1004-7638.2021.04.012

钒微合金化对汽车零部件用钢性能的影响

doi: 10.7513/j.issn.1004-7638.2021.04.012
基金项目: 教育部科技发展中心科研课题(2018A05024)
详细信息
    作者简介:

    马骊歌(1967−),女,吉林长春人,硕士,副教授,研究方向:新能源汽车方面。E-mail:kongduan3975867616@163.com

  • 中图分类号: TF841.3,TG142.1

Effect of vanadium microalloying on properties of steel for automobile parts

  • 摘要: 制备了不同钒含量的钒微合金化汽车零部件用钢42CrMoVxx=0, 0.1, 0.3, 0.5, 0.7, 0.9),分析了钒微合金化对汽车零部件用钢拉伸性能、耐磨损和耐腐蚀性能的影响。结果表明,钒微合金化明显提高了汽车零部件用钢42CrMo的拉伸性能、耐磨损和耐腐蚀性能。随钒含量增加,钢拉伸性能、耐磨损和耐腐蚀性能均先提高后下降。与未添加钒的42CrMo钢相比,添加0.5%钒的汽车零部件用钢42CrMoV0.5的抗拉强度增大66 MPa、屈服强度增大67 MPa、断后伸长率增大3.5个百分点,磨损体积减小18×10−3 mm3,腐蚀电位正移88 mV、腐蚀电流减小了0.771 mA/cm2。汽车零部件用钢42CrMoV中钒含量优选0.5%。
  • 图  1  42CrMoVx试验钢拉伸试验结果

    Figure  1.  Tensile results of 42CrMoVx test steels

    图  2  42CrMoVx试验钢拉伸断口形貌

    Figure  2.  Tensile fracture morphologies of 42CrMoVx test steels

    图  3  42CrMoVx试验钢磨损试验结果

    Figure  3.  Wear results of 42CrMoVx test steels

    表  1  42CrMoVx试验钢化学成分

    Table  1.   Chemical compositions of 42CrMoVx test steels %

    编号CMnCrMoSiVSPFe
    试样1(x=0)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050<0.03<0.03Bal.
    试样2(x=0.1)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050.1<0.03<0.03Bal.
    试样3(x=0.3)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050.3<0.03<0.03Bal.
    试样4(x=0.5)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050.5<0.03<0.03Bal.
    试样5(x=0.7)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050.7<0.03<0.03Bal.
    试样6(x=0.9)0.42±0.050.75±0.051.1±0.050.25±0.050.20±0.050.9<0.03<0.03Bal.
    下载: 导出CSV

    表  2  42CrMoVx试验钢电化学腐蚀试验结果

    Table  2.   Electrochemical corrosion results of 42CrMoVx test steels

    编号腐蚀电位/V腐蚀电流/(mA·cm−2
    试样1(x=0)−0.4991.305
    试样2(x=0.1)−0.4450.846
    试样3(x=0.3)−0.4210.751
    试样4(x=0.5)−0.4010.534
    试样5(x=0.7)−0.4180.722
    试样6(x=0.9)−0.4590.917
    下载: 导出CSV
  • [1] Liu Qingmei, Feng Jiaojie. Development and current situation of advanced high-strength steel under the condition of automobile light weight[J]. Steel Rolling, 2020,37(4):65−70, 90. (刘清梅, 封娇洁. 汽车轻量化条件下先进高强钢的发展及现状[J]. 轧钢, 2020,37(4):65−70, 90.
    [2] Jin Xuejun, Gong Yu, Han Xianhong, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020,56(4):411−428. (金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020,56(4):411−428. doi: 10.11900/0412.1961.2019.00381
    [3] Zhang Chengcheng, Ma Xiaolei, Zhang Chaolei, et al. Evolution and control of surface decarburization in automobile front axle steel 42CrMoH[J]. Materials Review, 2020,34(12):127−131. (张成成, 马潇磊, 张朝磊, 等. 汽车前轴用42CrMoH钢表面脱碳演变规律及控制[J]. 材料导报, 2020,34(12):127−131.
    [4] Lu Junhui, Liu Jiaqi, Qiu Shengtao, et al. Determination of fatigue limit and analysis of fatigue fracture of 600 MPa automobile frame steel[J]. Science Technology and Engineering, 2020,20(1):135−140. (卢军辉, 刘家琪, 仇圣桃, 等. 600 MPa级汽车大梁钢疲劳极限确定和疲劳断裂原因分析[J]. 科学技术与工程, 2020,20(1):135−140. doi: 10.3969/j.issn.1671-1815.2020.01.021
    [5] Chen Zezhong, Liu Huan, Xie Honghao, et al. Numerical simulation and process analysis of 22MnMoB steel in hot stamping for automobile rear floor crossmember[J]. Journal of Plasticity Engineering, 2020,27(2):13−20. (陈泽中, 刘欢, 谢洪昊, 等. 22MnMoB钢汽车后地板横梁热冲压成形数值模拟和工艺研究[J]. 塑性工程学报, 2020,27(2):13−20. doi: 10.3969/j.issn.1007-2012.2020.02.002
    [6] Hou Yudong, Jing Cainian, Ding Xiaoyun, et al. Effect of strain rate on microstructure and properties of high strength steel for automobile[J]. Heat Treatment of Metals, 2020,45(9):71−76. (候玉栋, 景财年, 丁啸云, 等. 应变速率对汽车用高强钢组织和性能的影响[J]. 金属热处理, 2020,45(9):71−76.
    [7] Zhao Tiantian, Teng Lvdan, Jin Yangfan, et al. Microstructures and mechanical properties of niobium-containing ferritic stainless steel suitable for automobile exhaust manifold[J]. Shanghai Metals, 2020,42(2):63−68. (赵天天, 滕铝丹, 金洋帆, 等. 适用于汽车排气歧管的含铌铁素体不锈钢的组织与力学性能[J]. 上海金属, 2020,42(2):63−68. doi: 10.3969/j.issn.1001-7208.2020.02.011
    [8] Lin Shaokai, Dong Xuanpu, Guo Ting, et al. 3Dp printing sand casting technology for high-graded automobile stamping die casting steel parts[J]. Special Casting & Nonferrous Alloys, 2020,40(4):392−395. (林少凯, 董选普, 郭艇, 等. 高端汽车冲压模铸钢件的3Dp打印砂型铸造技术[J]. 特种铸造及有色合金, 2020,40(4):392−395.
    [9] Xue Feng, Sun Yan, Zhao Nan, et al. Study on formability of HC340LA low alloy high strength sheet for automobile[J]. Hot Working Technology, 2020,49(5):46−48. (薛峰, 孙岩, 赵楠, 等. 汽车用低合金高强度HC340LA钢板的成形性能研究[J]. 热加工工艺, 2020,49(5):46−48.
    [10] Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020,56(4):400−410. (王存宇, 常颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020,56(4):400−410. doi: 10.11900/0412.1961.2019.00371
    [11] Ye Yanxian, Yu Jiaojiao. Refining process optimization of vanadium-bearing steel 20CrMoV for automotive gear[J]. Iron Steel Vanadium Titanium, 2019,40(6):108−112. (叶燕仙, 于娇娇. 含钒汽车齿轮钢20CrMoV的精炼工艺优化[J]. 钢铁钒钛, 2019,40(6):108−112.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  16
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回