留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛磁铁矿球团煤基还原颗粒运动及煤粉喷射燃烧数值模拟

刘鹏 宇文超 龚斯宇 刘秉国 张利波 彭金辉

刘鹏, 宇文超, 龚斯宇, 刘秉国, 张利波, 彭金辉. 钒钛磁铁矿球团煤基还原颗粒运动及煤粉喷射燃烧数值模拟[J]. 钢铁钒钛, 2021, 42(4): 97-104. doi: 10.7513/j.issn.1004-7638.2021.04.017
引用本文: 刘鹏, 宇文超, 龚斯宇, 刘秉国, 张利波, 彭金辉. 钒钛磁铁矿球团煤基还原颗粒运动及煤粉喷射燃烧数值模拟[J]. 钢铁钒钛, 2021, 42(4): 97-104. doi: 10.7513/j.issn.1004-7638.2021.04.017
Liu Peng, Yu Wenchao, Gong Siyu, Liu Bingguo, Zhang Libo, Peng Jinhui. Simulation on particle movement and pulverized coal jet combustion of titano-magnetite pellets during the reduction with coal in rotary kiln[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 97-104. doi: 10.7513/j.issn.1004-7638.2021.04.017
Citation: Liu Peng, Yu Wenchao, Gong Siyu, Liu Bingguo, Zhang Libo, Peng Jinhui. Simulation on particle movement and pulverized coal jet combustion of titano-magnetite pellets during the reduction with coal in rotary kiln[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 97-104. doi: 10.7513/j.issn.1004-7638.2021.04.017

钒钛磁铁矿球团煤基还原颗粒运动及煤粉喷射燃烧数值模拟

doi: 10.7513/j.issn.1004-7638.2021.04.017
基金项目: 国家重点研发计划(2018YFC1900500)
详细信息
    作者简介:

    刘鹏(1989−),男,辽宁葫芦岛人,博士在读,研究方向:钒钛磁铁矿非高炉冶炼技术,E-mail:786538903@qq.com;

    通讯作者:

    刘秉国,教授,博士,电话:0871-5191046,E-mail:bingoliu@126.com

  • 中图分类号: TF55, TF046

Simulation on particle movement and pulverized coal jet combustion of titano-magnetite pellets during the reduction with coal in rotary kiln

  • 摘要: 开展了回转窑内钒钛磁铁矿球团煤基还原颗粒运动及煤粉喷射燃烧数值模拟研究。结果表明,回转窑内三种颗粒在运动过程中存在分层现象和离散料堆现象。离散料堆现象导致了颗粒数轴向周期性波动分布,并结合反应焓变推导出了单个周期内的平均波动能量为$ \tilde {{E}}$= 25.58 MJ;煤粉喷射燃烧过程中燃料射流在重力作用下会形成反弹效果,作用区间长度约2 m,该区域内传质传热过程被强化,易出现局部过热现象,可通过附着配碳和外配碳球团混合配碳的方式削弱能量波动与局部过热,矿石颗粒的附着配碳量约为18.9 g/kg。
  • 图  1  回转窑的模拟简化结构

    (a)回转窑结构;(b)颗粒运动模拟简化结构;(c)煤粉喷射燃烧模拟网格划分

    Figure  1.  Simplified simulation structure of rotary kiln

    图  2  颗粒运动模拟结果

    (a)休止角计算与分层现象;(b)反应区域内颗粒数轴向波动性分析;(c)反应区域内反应焓引起的能量轴向波动性分析

    Figure  2.  Simulation results of particle motion

    图  3  还原过程中相关反应的热力学分析

    (a)固相还原反应;(b)间接气相还原反应

    Figure  3.  Thermodynamic analysis of related reactions in reduction process

    图  4  煤粉喷射燃烧温度场分布模拟结果(径向截面与左视图)

    Figure  4.  Simulation results of temperature field distribution of pulverized coal injection combustion (radial section and left view)

    图  5  煤粉喷射燃烧速度场分布模拟结果(反弹长度指数-RLI)

    反应区域内重力作用下燃料射流的反弹效果

    Figure  5.  Simulation results of velocity field distribution of pulverized coal injection combustion (Rebound Length Index-RLI)

    表  1  钒钛磁铁矿精矿主要化学成分

    Table  1.   Main chemical compositions of titano-magnetite concentrate %

    Fe3O4TiO2Al2O3SiO2MgOCaOMnONa2OCo3S4ZnSCuS
    68.5113.415.006.774.451.170.290.160.150.0500.019
    下载: 导出CSV

    表  2  模拟过程(颗粒运动)中的颗粒生成参数

    Table  2.   Particle formation parameters used in simulation study (particle motion)

    实体密度
    ρ/(g·cm−3)
    半径分布/
    mm
    生成速率/
    (kg·s−1)
    质量分数/
    %
    煤粒1.5N(10,0.25)0.206211.42
    熔剂2.6N(5,0.25)0.146111.50
    矿粒3.6N(7.5,0.25)1.208377.08
    注:N(10,0.25)表示模拟过程中颗粒半径按正态分布生成,10 为半径平均值(单位:mm),0.25为标准差。
    下载: 导出CSV

    表  3  模拟过程中(煤粉喷射燃烧)燃料参数

    Table  3.   Fuel parameters used in simulation study (pulverized coal injection combustion)

    燃料空气混合物组成/%工业分析/%元素分析w/%
    煤粉O2CO2H2O挥发分C固灰分水分CHON
    2018.40.10.1107510590541
    注:燃料热值为29.67 MJ/kg。
    下载: 导出CSV

    表  4  模拟过程中(煤粉喷射燃烧)燃料喷射速度

    Table  4.   Fuel injection velocity used in simulation study (pulverized coal injection combustion)

    煤粉喷射速度/(m·s−1)质量流动/(kg·s−1)
    60.0666691
    7 0.0777806
    8 0.0888922
    9 0.100004
    100.111115
    下载: 导出CSV
  • [1] Guo X, Dai S, Wang Q. Influence of different comminution flowsheets on the separation of vanadium titano-magnetite[J]. Minerals Engineering, 2020,149:106−177.
    [2] Chen J, Chen W, Mi L, et al. Kinetic studies on gas-based reduction of V anadium titano-magnetite pellet[J]. Metals, 2019,9:145−158. doi: 10.3390/met9020145
    [3] Hu T, Lv X, Bai C, et al. Reduction behavior of Panzhihua titanomagnetite concentrates with coal[J]. Metallurgical and Materials Transactions B, 2013,44B:252−260.
    [4] Jiang T, Yu Z, Peng Z, et al. Preparation of BF burden from titanomagnetite concentrate by composite agglomeration process (CAP)[J]. ISIJ International, 2015,55:1599−1607. doi: 10.2355/isijinternational.ISIJINT-2015-094
    [5] Jiang T, Wang S, Guo Y, et al. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process[J]. Metals, 2016,6:1−10.
    [6] Fu W, Wen Y, Xie H. Development of intensified technologies of vanadium-bearing titanomagnetite smelting[J]. Journal of Iron and Steel Research, International, 2011,18:7−10.
    [7] Wang S, Guo Y, Jiang T, et al. Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace[J]. JOM, 2019,71:323−328. doi: 10.1007/s11837-018-2932-y
    [8] Gan M, Sun Y, Fan X, et al. Preparing high-quality vanadium titano-magnetite pellets for large-scale blast furnaces as ironmaking burden[J]. Ironmaking & Steelmaking, 2018,139:149−158.
    [9] Zeng R, Li W, Wang N, et al. Influence and mechanism of CaO on the oxidation induration of Hongge vanadium titanomagnetite pellets[J]. ISIJ International, 2020,142:1−10.
    [10] Hu T, Lv X, Bai C, et al. Carbothermic reduction of titanomagnetite concentrates with ferrosilicon addition[J]. ISIJ International, 2013,53:557−563. doi: 10.2355/isijinternational.53.557
    [11] Liu P, Zhang L, Liu B, et al. Determination of dielectric properties of titanium carbide fabricated by microwave synthesis with Ti-bearing blast furnace slag[J]. International Journal of Minerals, Metallurgy and Materials, 2021,28:88−91. doi: 10.1007/s12613-020-1985-4
    [12] Yang J, Tang Y, Yang K, et al. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site[J]. Journal of Hazardous Materials, 2014,264:498−504. doi: 10.1016/j.jhazmat.2013.09.063
    [13] Zeng R, Li W, Wang N, et al. Effect of Al2O3 on the gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet under simulated shaft furnace atmosphere[J]. Powder Technology, 2020,376:342−350. doi: 10.1016/j.powtec.2020.08.043
    [14] Chen D, Zhao L, Liu Y, et al. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes[J]. Journal of Hazardous Materials, 2013,(244−245):588−595.
    [15] Adetoro A, Sun H, He S, et al. Effects of low-temperature pre-oxidation on the titanomagnetite ore structure and reduction behaviors in a fluidized bed[J]. Metallurgical and Materials Transactions B, 2018,49B:846−857.
    [16] Dang J, Zhang G, Hu X, et al. Non-isothermal reduction kinetics of titanomagnetite by hydrogen[J]. International Journal of Minerals, Metallurgy and Materials, 2013,20:1134−1139. doi: 10.1007/s12613-013-0846-9
    [17] Geng C, Sun T, Yang H, et al. Effect of Na2SO4 on the embedding direct reduction of beach titanomagnetite and the separation of titanium and iron by magnetic separation[J]. ISIJ International, 2015,55:2543−2549. doi: 10.2355/isijinternational.ISIJINT-2015-420
    [18] Du Q, Mo H, Tian L, et al. A preliminary control system on a barium sulphide rotary kiln process[J]. IEEE Computer Society, 2010,142:286−290.
    [19] Atmaca A, Yumrutas R. Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry[J]. Applied Thermal Engineering, 2014,66:435−444. doi: 10.1016/j.applthermaleng.2014.02.038
    [20] Mu J, Leder F, Park W C, et al. Reduction of phosphate ores by carbon: Part I. process variables for design of rotary kiln system[J]. Metall. Mater. Trans. B, 1986,17B:861−868.
    [21] Boateng A A. Rotary kilns-transport phenomena and transport processes[M]. 2nd Edition. Elsevier, 2016.
    [22] Zhao S, Zhou X, Liu W. Discrete element simulations of direct shear tests with particle angularity effect[J]. Granular Matter, 2015,17:793−806. doi: 10.1007/s10035-015-0593-x
    [23] Yakhot V, Orszag S A. Renormalization group analysis of turbulence[J]. Journal of Scientific Computing, 1986,1:3−49. doi: 10.1007/BF01061452
    [24] Wang S, Lu J, Li W, et al. Modeling of pulverized coal combustion in cement rotary kiln[J]. Energy & Fuels, 2006,20:2350−2356.
    [25] Escotet-Espinoza M, Foster C, Ierapetritou M. Discrete element modeling (DEM) for mixing of cohesive solids in rotating cylinders[J]. Powder Technology, 2018,335:124−136. doi: 10.1016/j.powtec.2018.05.024
    [26] Ndiaye L, Caillat S, Chinnayya A, et al. Application of the dynamic model of saeman to an industrial rotary kiln incinerator: Numerical and experimental results[J]. Waste Management, 2010,30:1188−1195. doi: 10.1016/j.wasman.2009.09.023
    [27] Ding Y, Wang J, She X, et al. Reduction characteristics and kinetics of bayanobo complex iron ore carbon bearing pellets[J]. Journal of Iron and Steel Research, International, 2012,20:28−33.
    [28] Zhou L, Zeng F. Reduction mechanisms of vanadium-titanomagnetite-non-coking coal mixed pellet[J]. Ironmaking and Steelmaking, 2011,38:59−64. doi: 10.1179/030192310X12816231892549
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  70
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回