留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

底吹氩VD钢包炉流场优化的数值模拟研究

刘崇林 宋思程 孙彦辉 安航航 周律敏 梁龙清 龙连

刘崇林, 宋思程, 孙彦辉, 安航航, 周律敏, 梁龙清, 龙连. 底吹氩VD钢包炉流场优化的数值模拟研究[J]. 钢铁钒钛, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020
引用本文: 刘崇林, 宋思程, 孙彦辉, 安航航, 周律敏, 梁龙清, 龙连. 底吹氩VD钢包炉流场优化的数值模拟研究[J]. 钢铁钒钛, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020
Liu Chonglin, Song Sicheng, Sun Yanhui, An Hanghang, Zhou Lvmin, Liang Longqing, Long Lian. Study on numerical simulation for flow field optimization in argon blowing VD ladle[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020
Citation: Liu Chonglin, Song Sicheng, Sun Yanhui, An Hanghang, Zhou Lvmin, Liang Longqing, Long Lian. Study on numerical simulation for flow field optimization in argon blowing VD ladle[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 117-123. doi: 10.7513/j.issn.1004-7638.2021.04.020

底吹氩VD钢包炉流场优化的数值模拟研究

doi: 10.7513/j.issn.1004-7638.2021.04.020
基金项目: 国家自然科学基金(51774030,U1860104)资助项目
详细信息
    作者简介:

    刘崇林(1983−),男,博士,主要从事连铸坯质量控制以及品种钢研发,E-mail:liuchonglin2003@163.com

    通讯作者:

    孙彦辉(1971−),男,博士,教授,主要从事品种钢开发及连铸工艺关键技术研究,E-mail:ustb420@126.com

  • 中图分类号: TF044

Study on numerical simulation for flow field optimization in argon blowing VD ladle

  • 摘要: 以某钢厂150 t VD钢包炉为研究对象,采用商业软件Ansys-Fluent,建立钢包底吹氩气模型,结合正交设计方法,模拟了不同钢液量,两个吹氩口不同吹氩量工艺条件下钢包内流场和流速变化,同时考虑了静置10 min后钢包炉内钢液流动情况。所有试验均监测钢包下部同一位置的速度大小,通过正交设计方法选择最优的生产方案。研究结果表明:钢包内钢液量和底吹氩气量在小范围内变动对钢包内钢液流场和流速影响不大,且钢液量和氩气口吹氩量对静置10 min后钢液内流场流速的影响可以忽略不计。吹氩量过大会导致渣眼开度较大引起卷渣和吸气现象,吹气量过小钢液流速较低则导致形成稳定循环流场所需时间较长。最终通过对比分析得出在钢液高度选用3590 mm,1#和2#氩气口流量均采用0.9 m3/h时钢包炉内综合流动效果较好,减少了钢水受污染程度,提高了生产效率。
  • 图  1  钢包网格

    Figure  1.  Ladle mess

    图  2  流线与氩气

    Figure  2.  Streamline and argon

    图  3  氩气口截面流速流线

    Figure  3.  Flow velocity streamline of argon port

    图  4  垂直方向分布云图

    Figure  4.  Vertically distributed clouds

    图  5  速度分布矢量

    Figure  5.  Velocity distribution vector

    图  6  钢液流线和垂直方向流速分布

    Figure  6.  Molten steel flow lines and vertical flow velocity distribution

    图  7  检测点速度总和

    Figure  7.  Sum of the speed at detection points

    图  8  氩气动能利用效率

    Figure  8.  Utilization efficiency of argon aerodynamic energy

    表  1  正交试验因素及水平

    Table  1.   Factors and level of orthogonal experiment


    水平
    A
    钢液高度/mm
    B
    1号氩气口流量/(m3·h−1)
    C
    2号氩气口流量/(m3·h−1)
    138900.60.6
    235900.90.9
    332901.21.2
    下载: 导出CSV

    表  2  试验计划

    Table  2.   Experimental matrix


    试样号
    A
    钢液高度
    B
    1号氩气口流量
    C
    2号氩气口流量
    D
    空白列
    1#A1B1C1D1
    2#A1B2C2D2
    3#A1B3C3D3
    4#A2B1C2D3
    5#A2B2C3D1
    6#A2B3C1D2
    7#A3B1C3D2
    8#A3B2C1D3
    9#A3B3C2D1
    下载: 导出CSV

    表  3  钢包实体尺寸

    Table  3.   Dimensions of solid ladle

    钢液高度/mm钢液上部直径/mm钢液底部直径/mm
    网格1389030282764
    网格2359030082764
    网格3329029872764
    下载: 导出CSV

    表  4  钢包底吹口布置

    Table  4.   Ladle bottom mouthpiece arrangement

    两氩气口中心到钢
    包炉中心角度/(°)
    氩气口线距
    底面中心/mm
    氩气口等
    效直径/mm
    9075040
    下载: 导出CSV

    表  5  数值模拟材料参数

    Table  5.   Material parameters used for numerical simulation

    材料密度/(kg·m−3)粘度/(kg·m−1·s−1)比热/(J·kg−1·K−1)导热系数/(W·m−1·K−1)参考温度/K相对原子质量
    钢液70200.0067750411 86056
    氩气1.62282.125E-055200.024230039.95
    下载: 导出CSV

    表  6  速度入口设置参数

    Table  6.   Ssetting parameters of inlet speed

    氩气流量/(m3·h−1)氩气口流速/(m·s−1)k/(m2·s−2)e/(m2·s−3)
    0.60.1326290.0001760.000117
    0.90.1989440.0003960.000394
    1.20.2652580.0007040.000933
    下载: 导出CSV

    表  7  试验结果

    Table  7.   Experimental results

    试样号A
    钢液
    高度
    B
    1#氩气
    口流量
    C
    2#氩气
    口流量
    D
    空白
    检测点x y z三个
    方向速度总和/
    (m·s−1)
    1#A1B1C1D10.0125
    2#A1B2C2D20.0277
    3#A1B3C3D30.0319
    4#A2B1C2D30.0248
    5#A2B2C3D10.0296
    6#A2B3C1D20.0291
    7#A3B1C3D20.0173
    8#A3B2C1D30.0259
    9#A3B3C2D10.0251
    0.07210.05460.06750.0672T=0.2239
    $\mu = \dfrac{T}{9} = 0.024\;9$
    0.08350.08320.07760.0741
    0.06830.08610.07880.0862
    Ⅰ/30.02400.01820.02250.0224
    Ⅱ/30.02780.02770.02590.0247
    Ⅲ/30.02280.02870.02630.0287
    下载: 导出CSV

    表  8  数据偏离值

    Table  8.   Data deviation values

    钢液高度A1号氩气口流量B2号氩气口流量C
    Ⅰ/3−$\mu $−0.0009−0.0067−0.0024
    Ⅱ/3−$\mu $0.00290.00280.001
    Ⅲ/3−$\mu $−0.00210.00380.0014
    下载: 导出CSV
  • [1] Ren Ying, Zhang Lifeng, Li Yanlong, et al. Numberical simulation of fluid flow and alloy dispersion in an argon gas stirred ladle[J]. Journal of Iron and Steel Research, 2014,26(7):28−34. (任英, 张立峰, 李燕龙, 等. 底吹氩钢包内钢液流动与合金扩散的数值模拟[J]. 钢铁研究学报, 2014,26(7):28−34.
    [2] Pirker S, König B, Puttinger S, et al. A glance on turbulence modelling in simulating bubble stirred ladle flow[J]. BHM Berg- und Hüttenmännische Monatshefte, 2013,158(11):472−474.
    [3] Liu Y, Liu Y, Ersson M, et al. A review of physical and numerical approaches for the study of gas stirring in ladle metallurgy[J]. Metallurgical and Materials Transactions B, 2019,50(1):555−577. doi: 10.1007/s11663-018-1446-x
    [4] Bellot J, Bellot J, De Felice V, et al. Coupling of CFD and PBE calculations to simulate the behavior of an inclusion population in a gas-stirring ladle[J]. Metallurgical and Materials Transactions B, 2014,45(1):13−21. doi: 10.1007/s11663-013-9940-7
    [5] Geng D, Lei H, He J. Optimization of mixing time in a ladle with dual plugs[J]. International Journal of Minerals, Metallurgy, and Materials, 2010,17(6):709−714. doi: 10.1007/s12613-010-0378-5
    [6] Zheng Shuguo, Zhu Miaoyong. Physica modeling of inclusion behavior in ladle witheccentric bottom blowing argon[J]. Journal of Iron and Steel Research, 2008,(6):18−22. (郑淑国, 朱苗勇. 偏心底吹氩钢包内夹杂物行为的物理模拟[J]. 钢铁研究学报, 2008,(6):18−22.
    [7] Yan Huicheng, He Qing, Guo Zheng, et al. Water modeling of slight stirring in ladle[J]. Journal of Iron and Steel Research, 2006,(2):15−20. (颜慧成, 贺庆, 郭征, 等. 钢包弱搅拌水模拟实验研究[J]. 钢铁研究学报, 2006,(2):15−20. doi: 10.3321/j.issn:1001-0963.2006.02.004
    [8] Lee H, Yi K. Development of a numerical model to predict areas of plume eye of ladle furnace process[J]. Metals and Materials International, 2015,21(3):511−520. doi: 10.1007/s12540-015-4291-3
    [9] Hoang Q N, Ramírez-Argáez M A, Conejo A N, et al. Numerical modeling of liquid–liquid mass transfer and the influence of mixing in gas-stirred ladles[J]. JOM, 2018,70(10):2109−2118. doi: 10.1007/s11837-018-3056-0
    [10] Liu W, Tang H, Yang S, et al. Numerical simulation of slag eye formation and slag entrapment in a bottom-blown argon-stirred Ladle[J]. Metallurgical and Materials Transactions B, 2018,49(5):2681−2691. doi: 10.1007/s11663-018-1308-6
    [11] Guo Zhenhe, Deng Liqin, Qu Tianpeng. Numerical simulation on fluid flow and mixingbehavior in argon blowing ladle[J]. Steelmaking, 2018,34(3):18−24. (郭振和, 邓丽琴, 屈天鹏. 吹氩钢包内气液两相流动及均混行为的数值模拟[J]. 炼钢, 2018,34(3):18−24.
    [12] Pan S M, Chiang J D, Hwang W S. Simulation of large bubble/molten steel interaction for gas-injected ladle[J]. Journal of Materials Engineering and Performance, 1999,8(2):236−244. doi: 10.1361/105994999770347098
    [13] Alexiadis A, Gardin P, Domgin J F. Spot turbulence, breakup, and coalescence of bubbles released from a porous plug injector into a gas-stirred ladle[J]. Metallurgical and Materials Transactions B, 2004,35(5):949−956. doi: 10.1007/s11663-004-0089-2
    [14] Lou W, Zhu M. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on euler–euler approach[J]. Metallurgical and Materials Transactions B, 2013,44(5):1251−1263. doi: 10.1007/s11663-013-9897-6
    [15] Li L, Liu Z, Cao M, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–Volume of fluid (VOF) coupled model[J]. JOM, 2015,67(7):1459−1467. doi: 10.1007/s11837-015-1465-x
    [16] Xia J L, Ahokainen T. Transient flow and heat transfer in a steelmaking ladle during the holding period[J]. Metallurgical and Materials Transactions B, 2001,32(4):733−741. doi: 10.1007/s11663-001-0127-2
    [17] Launder B E, Spalding D B. Lectures in mathematical model of turbulence[M]. England. London: Academic Press, 1972.
  • 加载中
图(8) / 表(8)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  44
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回