留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助熔剂对CaO-Al2O3基保护渣理化性能的影响

李晨 亓捷 刘承军 姜茂发

李晨, 亓捷, 刘承军, 姜茂发. 助熔剂对CaO-Al2O3基保护渣理化性能的影响[J]. 钢铁钒钛, 2021, 42(4): 124-130. doi: 10.7513/j.issn.1004-7638.2021.04.021
引用本文: 李晨, 亓捷, 刘承军, 姜茂发. 助熔剂对CaO-Al2O3基保护渣理化性能的影响[J]. 钢铁钒钛, 2021, 42(4): 124-130. doi: 10.7513/j.issn.1004-7638.2021.04.021
Li Chen, Qi Jie, Liu Chengjun, Jiang Maofa. Effect of fluxing agent on the properties of CaO-Al2O3 based mold flux[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 124-130. doi: 10.7513/j.issn.1004-7638.2021.04.021
Citation: Li Chen, Qi Jie, Liu Chengjun, Jiang Maofa. Effect of fluxing agent on the properties of CaO-Al2O3 based mold flux[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 124-130. doi: 10.7513/j.issn.1004-7638.2021.04.021

助熔剂对CaO-Al2O3基保护渣理化性能的影响

doi: 10.7513/j.issn.1004-7638.2021.04.021
基金项目: 国家自然科学基金项目(U1908224,51904064,51874082);中国博士后科学基金项目(2020T130084,2019M661114)
详细信息
    作者简介:

    李晨(1995−),男,硕士生,主要从事连铸保护渣研究,E-mail:1043483605@qq.com

    通讯作者:

    刘承军(1974−),男,博士,教授,主要从事高品质钢研制开发与特色冶金渣系设计,E-mail:liucj@smm.neu.edu.cn

  • 中图分类号: TF777

Effect of fluxing agent on the properties of CaO-Al2O3 based mold flux

  • 摘要: 针对高铝钢用钙铝基连铸保护渣在浇铸过程中存在的渣条严重、粘结漏钢报警频发等问题,通过调整助熔剂含量,考察了以B2O3替代CaF2对保护渣熔化温度、黏度及结晶性能的影响。结果表明,随着B2O3替代CaF2质量分数的增加,保护渣的熔化温度和转折点温度不断降低,高温下的黏度不断提高。而且,CaF2质量分数较高时,保护渣的析晶性能较强,高温处析出Ca12Al14O32F2。随着B2O3取代CaF2质量分数的增加,保护渣的析晶性能受到明显抑制,析晶物相的变化规律为Ca12Al14O32F2 →2CaO·Al2O3·SiO2 →单一液相。B2O3取代CaF2质量分数为10%时,保护渣的析晶性能得到有效抑制,可有效降低粘结报警频率,满足高铝钢种的浇铸需求。
  • 图  1  CaO-Al2O3-B2O3体系和 CaO-Al2O3-CaF2体系等温截面

    Figure  1.  Isothermal sections of CaO-Al2O3-B2O3 system and CaO-Al2O3-CaF2 system

    图  2  不同B2O3代替CaF2质量分数条件下保护渣的黏度-温度曲线

    Figure  2.  Viscosity-temperature curves of mold flux with different contents of B2O3 as replacement for CaF2

    图  3  S1渣在不同温度下淬冷渣样的扫描电镜形貌以及充分析晶 (5 Pa·s)下淬冷渣样的XRD图谱

    P1:Ca12Al14O32F2 ;M:液相

    Figure  3.  SEM images of S1 mold flux quenched at different temperatures,and XRD patterns of S1 mold flux quenched at full crystallization (5 Pa·s)

    图  4  S2渣在不同温度下淬冷渣样的扫描电镜形貌以及在充分析晶 (5 Pa·s)下淬冷渣样的XRD分析图谱

    P2:2CaO·Al2O3·SiO2;M:液相

    Figure  4.  SEM images of S2 mold flux quenched at different temperatures,and XRD patterns of S2 mold flux quenched at full crytallization (5 Pa·s)

    图  5  S3渣在不同温度下淬冷渣样的扫描电镜图片以及在充分析晶 (5 Pa·s)下淬冷渣样的XRD分析图谱

    Figure  5.  SEM images of S3 mold flux quenched at different temperatures,and XRD patterns of S3 mold flux quenched at full crytallization (5 Pa·s)

    图  6  不同B2O3代替CaF2质量分数条件下保护渣结晶物相的析出情况

    Figure  6.  Crystallization of different phases for mold flux with different contents of B2O3 as replacement for CaF2

    表  1  国内某钢厂高铝钢连铸保护渣主要化学成分

    Table  1.   Min chemical compositions of high-aluminum steel continuous casting mold flux in a domestic steel plant %

    CaOSiO2Al2O3CaF2Li2OCaO/Al2O3
    31.817.5819.725.749.141.33
    下载: 导出CSV

    表  2  试验用高铝钢连铸保护渣化学成分

    Table  2.   Chemical compositions of mold flux used for high-Al steel continuous casting %

    序号CaOSiO2Al2O3Na2OCaF2Li2OB2O3CaO/Al2O3
    S132624523551.33
    S2326245185101.33
    S3326245135151.33
    下载: 导出CSV

    表  3  不同B2O3代替CaF2质量分数条件下保护渣在1300 ℃的黏度以及转折点温度

    Table  3.   Viscosity at 1 300 ℃ and breaking temperature of mold flux with different contents of B2O3 as replacement for CaF2

    序号1300 ℃黏度/(Pa·s)转折点温度/℃
    S10.0761260
    S20.1021004
    S30.118975
    下载: 导出CSV

    表  4  S1渣在不同温度下淬冷渣样相关物相的能谱分析

    Table  4.   EDS analysis of S1 mold flux quenched at different temperatures

    淬冷温度/℃物相摩尔分数/%
    CaAlSiNaFO
    1260P120.5327.055.2247.20
    M25.203.835.252.5618.2549.07
    1207P119.7326.674.5349.07
    M21.598.014.762.4518.7644.43
    下载: 导出CSV

    表  5  S2渣在不同温度下淬冷渣样相关物相的能谱分析

    Table  5.   EDS analysis of S2 mold flux quenched at different temperatures

    淬冷温度/℃物相摩尔分数/%
    CaAlSiNaFO
    1004P217.4622.046.9853.51
    M19.2513.743.702.519.7251.08
    975P218.4923.287.0851.14
    M19.6913.693.642.0910.4250.49
    下载: 导出CSV

    表  6  S3渣在不同温度下淬冷渣样相关物相的能谱分析

    Table  6.   EDS analysis of S3 mold flux quenched at different temperatures

    淬冷温度/℃物相摩尔分数/%
    CaAlSiNaFO
    975M17.5114.233.163.266.7455.10
    952M17.9314.433.302.817.0254.51
    下载: 导出CSV
  • [1] Ma Mingtu, Zhang Yisheng, Song Leifeng, et al. Research progress of hot stamping forming of ultra-high strength steel[J]. New Material Industry, 2015,(9):61−67. (马鸣图, 张宜生, 宋雷峰, 等. 超高强度钢热冲压成型研究进展[J]. 新材料产业, 2015,(9):61−67. doi: 10.3969/j.issn.1008-892X.2015.09.013
    [2] Xu Jinzhong, Han Yihua, Bi Yanxue, et al. Study on the dissolution behavior of Al2O3 by CaO-Al2O3 based continuous casting mold flux[J]. Iron Steel Vanadium Titanium, 2018,39(2):127−131. (许进忠, 韩毅华, 毕延雪, 等. CaO-Al2O3基连铸保护渣对Al2O3溶解行为的研究[J]. 钢铁钒钛, 2018,39(2):127−131. doi: 10.7513/j.issn.1004-7638.2018.02.021
    [3] Wang Huan, Tang Ping, Wen Guanghua, et al. Research on non-reactive continuous casting mold flux for high aluminum steel[J]. Iron Steel Vanadium Titanium, 2010,31(3):20−24. (王欢, 唐萍, 文光华, 等. 高铝钢非反应性连铸保护渣的研究[J]. 钢铁钒钛, 2010,31(3):20−24.
    [4] Yu Xiong, Wen Guanghua, Tang Ping, et al. The effect of F- on the physical and chemical properties of high-aluminum steel continuous casting mold flux[J]. Chinese Journal of Process Engineering, 2010,10(6):1153−1157. (于雄, 文光华, 唐萍, 等. F-对高铝钢连铸保护渣理化性能的影响[J]. 过程工程学报, 2010,10(6):1153−1157.
    [5] Yang J, Zhang J, Ostrovski O, et al. Effects of fluorine on solidification, viscosity, structure, and heat transfer of CaO-Al2O3-based mold fluxes[J]. Metall Mater Trans. B, 2019,50:1766−1772. doi: 10.1007/s11663-019-01579-z
    [6] Qi J, Liu C J, Jiang M F. Viscosity-structure-crystallization of the Ce2O3-bearing calcium-aluminate-based melts with different contents of B2O3[J]. ISIJ International, 2018,58(1):186−193. doi: 10.2355/isijinternational.ISIJINT-2017-252
    [7] Zhang L, Wang W, Xie S, et al. Effect of basicity and B2O3 on the viscosity and structure of fluorine-free mold flux[J]. Journal of Non-Crystalline Solids, 2017,460:113−118. doi: 10.1016/j.jnoncrysol.2017.01.031
    [8] Wang Xingjuan, Wu Binbin, Zhu Liguang, et al. Research on rheological characteristics of fluorine-free continuous casting mold fluxes[J]. Iron Steel Vanadium Titanium, 2017,38(4):135−139. (王杏娟, 武宾宾, 朱立光, 等. 无氟连铸保护渣流变特性的研究[J]. 钢铁钒钛, 2017,38(4):135−139. doi: 10.7513/j.issn.1004-7638.2017.04.024
    [9] Yan W, Chen W Q, Yang Y D, et al. Evaluation of B2O3 as replacement for CaF2 in CaO–Al2O3 based mould flux[J]. Ironmaking & Steelmaking, 2016,43(4):316−323.
    [10] Zeng Q, Stebbins J F. Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results[J]. American Mineralogist, 2000,85(5-6):863−867. doi: 10.2138/am-2000-5-630
    [11] Wang X, Jin H, Zhu L, et al. Effect of CaF2 on the viscosity and microstructure of CaO–SiO2–Al2O3 based continuous casting mold flux[J]. Metals, 2019,9(8):871. doi: 10.3390/met9080871
    [12] Sun Y Q, Zhang Z T. Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy[J]. Metallurgical and Materials Transactions B, 2015,46(4):1549−1554. doi: 10.1007/s11663-015-0374-2
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  13
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回