留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温轧工艺对6.5%高硅电工钢复合板铁损的影响

姬帅 刘忠军

姬帅, 刘忠军. 温轧工艺对6.5%高硅电工钢复合板铁损的影响[J]. 钢铁钒钛, 2021, 42(4): 162-168. doi: 10.7513/j.issn.1004-7638.2021.04.027
引用本文: 姬帅, 刘忠军. 温轧工艺对6.5%高硅电工钢复合板铁损的影响[J]. 钢铁钒钛, 2021, 42(4): 162-168. doi: 10.7513/j.issn.1004-7638.2021.04.027
Ji Shuai, Liu Zhongjun. Effect of warm rolling process on iron loss of Fe-6.5%Si electrical steel composite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 162-168. doi: 10.7513/j.issn.1004-7638.2021.04.027
Citation: Ji Shuai, Liu Zhongjun. Effect of warm rolling process on iron loss of Fe-6.5%Si electrical steel composite[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 162-168. doi: 10.7513/j.issn.1004-7638.2021.04.027

温轧工艺对6.5%高硅电工钢复合板铁损的影响

doi: 10.7513/j.issn.1004-7638.2021.04.027
基金项目: 陕西省自然科学基础研究计划面上项目(2021JM-410);西安石油大学校青年创新团队基金(2019QNKYCXTD12)
详细信息
    作者简介:

    姬帅(1985−),男,山东菏泽人,工学博士,长期从事金属陶瓷复合多孔材料的基础研究工作,E-mail:jishuai029@xsyu.edu.cn

  • 中图分类号: TF76,TG142.7

Effect of warm rolling process on iron loss of Fe-6.5%Si electrical steel composite

  • 摘要: 对采用包覆浇铸结合热塑性变形制备的,三层热轧态1.2 mm厚的6.5%高硅电工钢复合板进行450~650 ℃的中温轧制变形,并对温轧后的复合板进行微观结构观察和强磁场环境下的铁损测试,之后对复合板进行加热至1150 ℃保温30 min的扩散退火处理和相同磁场下的铁损测试,并对比了上述两组试验的显微结构变化及铁损变化。结果表明:1.2 mm厚的6.5%高硅电工钢复合板在450~650 ℃内加热,可以通过温轧变形减薄至0.37 mm;温轧工艺对复合板的铁损影响很大,在强磁场环境下差异更加明显;加热至1150 ℃保温30 min的扩散退火工艺可以显著降低温轧态复合板的铁损,最大可以降低98.9%。该课题的研究有助于改良三层6.5%高硅电工钢复合板的磁学性能。
  • 图  1  热轧态6.5%高硅电工钢复合板

    Figure  1.  Fe-6.5%Si composite after hot rolling

    图  2  6.5%高硅电工钢复合板温轧变形后的微观形貌

    (a)1#试样;(b)2#试样;(c)3#试样;(d)4#试样

    Figure  2.  Microstructure of Fe-6.5%Si composite after warm rolling

    图  3  扩散退火处理后6.5%高硅电工钢复合板微观形貌

    (a)1#试样;(b)2#试样;(c)3#试样;(d)4#试样

    Figure  3.  Microstructure of Fe-6.5%Si composite after diffusion annealing

    表  1  热轧6.5%高硅电工钢复合板的化学成分

    Table  1.   Chemical compositions of Fe-6.5%Si steel composite after hot rolled %

    AlCrMnPSCaSiCFe
    外层(Q235低碳钢)0.150.080.33<0.02<0.030.050.080.14剩余
    内层(Fe-10%Si合金)0.220.050.18<0.01<0.010.0710.080.02剩余
    下载: 导出CSV

    表  2  6.5%高硅电工钢复合板温轧变形道次压下量

    Table  2.   Pass reductions of Fe-6.5%Si composite with warm rolling

    板厚/mm道次变形量/%
    1.2000
    1.00117
    0.9228
    0.9032
    0.74418
    0.6759
    0.6464
    0.53717
    0.47811
    0.4594
    0.401011
    0.38115
    0.37123
    注:温轧起始温度为650 ℃、终轧温度为450 ℃,采用红外测温仪对试样每次温轧后进行温度测量,温轧分四个阶段完成,保温时间依次为45、30、20、15 min。
    下载: 导出CSV

    表  3  温轧后6.5%高硅电工钢复合板的铁损测试

    Table  3.   Iron loss test of Fe-6.5%Si steel after warm rolling

    试样名称试样厚度/mm铁损值/(W·kg−1)
    W10/50W10/400W2/1000W2/10000
    1#0.379.3292.85196.77362.55
    2#0.379.0390.94192.36339.85
    3#0.375.3937.67131.25224.73
    4#0.375.3837.64131.23223.95
    下载: 导出CSV

    表  4  扩散退火后6.5%高硅电工钢复合板的铁损测试

    Table  4.   Iron loss of Fe-6.5%Si composite after diffusion annealing

    试样名称试样厚度/mm铁损值/(W·kg−1)
    W10/50W10/400W2/1000W2/10000
    1#0.382.3222.582.17102
    2#0.382.1320.291.9489
    3#0.381.6817.061.3364
    4#0.381.6717.041.3263
    下载: 导出CSV
  • [1] Bozorth R M. Ferromagnetism[M]. New York: Van Nostrand, 1951.
    [2] Takada Y, Abe M, Masuda S, et al. Commercial scale production of Fe-6.5% Si sheet and its magnetic properties[J]. Journal of Applied Physics, 1988,64(10):5367−5369. doi: 10.1063/1.342373
    [3] Li Ran, Shen Qiang, Zhang Lianmeng, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling[J]. Journal of Magnetism and Magnetic Materials, 2004,281(2):135−139.
    [4] Ros-Yanez T, Houbaert Y, Gomez Rodrıguez V. High-silicon steel produced by hot dipping and diffusion annealing[J]. Journal of Applied Physics, 2002,91(10):7857. doi: 10.1063/1.1449445
    [5] Ji S, Han J, Liu J. Fabrication of 6.5%Si composite plate by coat casting and hot deformation processes[J]. Advanced Materials Research, 2014,902:7−11. doi: 10.4028/www.scientific.net/AMR.902.7
    [6] Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet[J]. Journal of Magnetism and Magnetic Materials, 1996,160:109−114. doi: 10.1016/0304-8853(96)00128-X
    [7] Li H, Liu H, Liu Y, et al. Effects of warm temper rolling on microstructure, texture and magnetic properties of strip-casting 6.5% Si electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2014,370:6−12. doi: 10.1016/j.jmmm.2014.06.053
    [8] Kubota T, Fujikura M, Ushigami Y. Recent progress and future trend on grain-oriented silicon steel[J]. Journal of Magnetism and Magnetic Materials, 2000,215:69−73.
    [9] Bolfarini C, Silva M, Jr A, et al. Magnetic properties of spray-formed Fe–6.5%Si and Fe–6.5%Si–1.0%Al after rolling and heat treatment[J]. Journal of Magnetism and Magnetic Materials, 2008,320(20):653−656. doi: 10.1016/j.jmmm.2008.04.104
    [10] Phway T, Moses A. Magnetostriction trend of non-oriented 6.5% Si-Fe[J]. Journal of Magnetism and Magnetic Materials, 2008,320(20):611−613. doi: 10.1016/j.jmmm.2008.04.074
    [11] Liang Y, Ge J, Fang X, et al. Hot deformation behavior and softening mechanism of Fe-6.5% Si alloy[J]. Materials Science and Engineering A, 2013,570:8−12. doi: 10.1016/j.msea.2013.01.070
    [12] He Z. Electrical steels[M]. Beijing: Metallurgical Industry Press, 1997.
    [13] Fu H, Zhang Z, Pan H, et al. Warm/cold rolling processes for producing Fe-6.5% Si electrical steel with columnar grains[J]. International Journal of Minerals, Metallurgy, and Materials, 2013,20(6):535−540. doi: 10.1007/s12613-013-0762-z
    [14] Moses A, Ntatsis A, Kochmann T, et al. Magnetostriction in non-oriented electrical steels general trends[J]. Journal of Magnetism and Magnetic Materials, 2000,215-216(1):669−672.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  15
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回