中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响

常凯华 徐涛 朱春丽 张龙飞 苏云龙 施晓芳 常立忠

常凯华, 徐涛, 朱春丽, 张龙飞, 苏云龙, 施晓芳, 常立忠. 电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响[J]. 钢铁钒钛, 2021, 42(4): 175-181. doi: 10.7513/j.issn.1004-7638.2021.04.029
引用本文: 常凯华, 徐涛, 朱春丽, 张龙飞, 苏云龙, 施晓芳, 常立忠. 电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响[J]. 钢铁钒钛, 2021, 42(4): 175-181. doi: 10.7513/j.issn.1004-7638.2021.04.029
Chang Kaihua, Xu Tao, Zhu Chunli, Zhang Longfei, Su Yunlong, Shi Xiaofang, Chang Lizhong. Effect of ESR on oxygen content and inclusions in GCr15 bearing steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 175-181. doi: 10.7513/j.issn.1004-7638.2021.04.029
Citation: Chang Kaihua, Xu Tao, Zhu Chunli, Zhang Longfei, Su Yunlong, Shi Xiaofang, Chang Lizhong. Effect of ESR on oxygen content and inclusions in GCr15 bearing steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 175-181. doi: 10.7513/j.issn.1004-7638.2021.04.029

电渣重熔对GCr15轴承钢中氧含量及夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2021.04.029
基金项目: 国家自然科学基金资助(51974002/52074002);工业强基资助项目(TC190A4DA-35)
详细信息
    作者简介:

    常凯华(1995−),男,安徽阜阳人,硕士生,研究方向特殊钢冶金

    通讯作者:

    施晓芳(1978−),女,博士,副教授,硕士生导师,研究方向为特殊钢冶金,E-mail:shixiaofang602@163.com

  • 中图分类号: TF76, TG115

Effect of ESR on oxygen content and inclusions in GCr15 bearing steel

  • 摘要: 电渣重熔对于提高钢的纯净度有明显的效果,但对于低氧含量钢种存在增氧现象。通过采用GCr15轴承钢作为自耗电极,研究在大气环境下和Ar保护下使用不同渣系对轴承钢中氧含量及夹杂物的变化规律。研究发现,采用CaF2-Al2O3-CaO三元渣系在氩气保护下电渣重熔GCr15轴承钢时,电渣锭中的氧含量随渣系中的Al2O3含量下降而降低,而使用不含Al2O3渣系重熔的电渣锭中氧含量最低;氩气保护下重熔的电渣锭中的夹杂物直径均比使用同种渣系在空气中重熔的电渣锭要小。氧含量增加主要是因为电渣重熔过程渣池温度过高,导致渣中Al2O3稳定性变差所致。
  • 图  1  电渣重熔设备示意

    Figure  1.  Schematic diagram of electroslag remelting equipment

    图  2  试验取样检测示意

    Figure  2.  Schematic diagram of experimental sampling

    图  3  电渣重熔前后氧氮含量的变化

    Figure  3.  Variation of TO and TN content before and after ESR

    图  4  电渣重熔前后不同直径夹杂物分布变化

    Figure  4.  Variation of inclusion distribution before and after ESR

    图  5  电极中夹杂物种类及数量分布

    Figure  5.  Distribution of type and quantity of inclusions in electrode

    图  6  电极中的典型夹杂物

    Figure  6.  Typical inclusions in electrodes

    图  7  电渣重熔后夹杂物的种类分布变化

    Figure  7.  Distribution of different types of inclusions after ESR

    图  8  Ar保护下电渣重熔氧含量的变化

    Figure  8.  Variation of oxygen content in ESR under Ar protection

    图  9  Ar保护下电渣锭中夹杂物直径的变化

    Figure  9.  Variation of inclusion diameter in ESR ingot under Ar protection

    图  10  电渣重熔后电渣锭夹杂物种类及数量

    Figure  10.  Types and number of inclusions in ESR ingot under Ar protection

    图  11  方案8重熔后电渣锭中典型夹杂物形貌及成分分布

    Figure  11.  Morphology and composition distribution of typical inclusions in ESR ingot after remelting under scheme 8

    图  12  重熔前后电极氧化情况

    Figure  12.  Electrode oxidation before and after remelting

    图  13  不同温度下的Al-O平衡关系

    Figure  13.  Al-O equilibrium diagram at different temperatures

    表  1  GCr15轴承钢主要化学成分

    Table  1.   Main chemical compositions of GCr15 bearing steel %

    CSiMnCrAlPSON
    0.990.210.351.470.020.0090.0010.000750.0039
    下载: 导出CSV

    表  2  试验用渣系化学成分及试验方案

    Table  2.   Chemical compositions and experimental scheme of experimental slag system

    研究方案渣系成分气氛
    1S170%CaF2+30%Al2O3大气
    2S265% CaF2+25% Al2O3+10%CaO大气
    3S360% CaF2+20%Al2O3+20%CaO大气
    4S460% CaF2+15%Al2O3+25%CaO大气
    5S570% CaF2+30%CaO大气
    6S170%CaF2+30%Al2O3Ar
    7S360%CaF2+20%Al2O3+20%CaOAr
    8S570%CaF2+30%CaOAr
    下载: 导出CSV
  • [1] Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012,57(2):268−435. doi: 10.1016/j.pmatsci.2011.06.002
    [2] Zhou Deguang, Xu Weiguo, Wang Ping, et al. Control and effect of oxygen in ESR process of bearing steel[J]. Iron and steel, 1998,33(3):13−17. (周德光, 徐卫国, 王平, 等. 轴承钢电渣重熔过程中氧的控制及作用研究[J]. 钢铁, 1998,33(3):13−17.
    [3] (王昊. H13钢中夹杂物控制及电渣重熔中的转变行为研究[D]. 北京: 北京科技大学, 2019.)

    Wang Hao. Control of inclusions in H13 steel and study on transformation behavior in ESR[D]. Beijing: Beijing University of Science and Technology, 2019.
    [4] (李世健. 电渣重熔G20CrNi2Mo轴承钢过程洁净度控制机理及工艺[D]. 北京: 北京科技大学, 2020.)

    Li Shijian. Cleanliness control mechanism and process of ESR G20CrNi2Mo bearing steel[D]. Beijing: Beijing University of Science and Technology, 2020.
    [5] Shi Chengbin, Wang Hui,Li Jing. Effects of reoxidation of liquid steel and slag composition on the chemistry evolution of inclusions during electroslag remelting[J]. Metallurgical & Materials Transactions B , 2018,49(4):1675-1689.
    [6] Zhan Dongping, Zhang Yangpeng, Liu R J, et al. Effect of protected electroslag remelting on cleanliness of G20CrNi2Mo bearing steel[J]. Ironmaking & Steelmaking, 2016,44(5):1−9.
    [7] Wang Changsheng, Liu Shengguo, Xu Mingde, et al. Reducing oxygen content of GCr15 steel by ESR[J]. Special Steel, 1997,(3):31−35. (王昌生, 刘胜国, 徐明德, 等. 降低电渣重熔GCr15钢的氧含量[J]. 特殊钢, 1997,(3):31−35.
    [8] Wang Qiang, Li Guangqiang, Gao Yunming, et al. A coupled mathematical model and experimental validation of oxygen transport behavior in the electro-slag refining process[J]. Journal of Applied Electrochemistry, 2017,47(4):1−12.
    [9] Li Shijian, Cheng Guoguang. Kinetic analysis of aluminum and oxygen variation of G20CrNi2Mo bearing steel during industrial electroslag remelting process[J]. ISIJ International, 2017,57(12):2148−2156. doi: 10.2355/isijinternational.ISIJINT-2017-227
    [10] Li Shijian, Cheng Guoguang, Miao Zhiqi, et al. Evolution of oxide inclusions in G20CrNi2Mo carburized bearing steel during industrial electroslag remelting[J]. ISIJ International, 2018,58(10):72.
    [11] Yan Qingzhong, Chen Lie, Li Fawen, et al. Optimization of remelting process of blade steel 1Cr12Ni2Mo2VN 1.1t ESR ingot[J]. Special Steel, 2015,36(2):44−47. (严清忠, 陈列, 李发文, 等. 叶片钢1Cr12Ni2Mo2VN 1.1t电渣锭重熔工艺的优化[J]. 特殊钢, 2015,36(2):44−47. doi: 10.3969/j.issn.1003-8620.2015.02.012
    [12] Chang Lizhong, Yang Haisen, Li Zhengbang. Study on oxygen behavior in electroslag remelting process[J]. Steelmaking, 2010,26(5):46−50. (常立忠, 杨海森, 李正邦. 电渣重熔过程中的氧行为研究[J]. 炼钢, 2010,26(5):46−50.
    [13] Chang Lizhong, Shi Xiaofang, Cong Junqiang. Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process[J]. Ironmaking & Steelmaking, 2014,41(3):182−186.
    [14] (李正邦. 电渣冶金的原理与实践[M]. 北京: 冶金工业出版社, 2010: 8.)

    Li Zhengbang. Principle and practice of electroslag metallurgy[M]. Beijing: Metallurgical Industry Press, 2010: 8.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  121
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回