留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束熔炼M35高速钢的热变形特征的研究

吴明慧 王轶农 王以霖 谭毅

吴明慧, 王轶农, 王以霖, 谭毅. 电子束熔炼M35高速钢的热变形特征的研究[J]. 钢铁钒钛, 2021, 42(4): 182-190. doi: 10.7513/j.issn.1004-7638.2021.04.030
引用本文: 吴明慧, 王轶农, 王以霖, 谭毅. 电子束熔炼M35高速钢的热变形特征的研究[J]. 钢铁钒钛, 2021, 42(4): 182-190. doi: 10.7513/j.issn.1004-7638.2021.04.030
Wu Minghui, Wang Yinong, Wang Yilin, Tan Yi. Study on the hot deformation characteristics of M35 high speed steel by electron beam smelting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 182-190. doi: 10.7513/j.issn.1004-7638.2021.04.030
Citation: Wu Minghui, Wang Yinong, Wang Yilin, Tan Yi. Study on the hot deformation characteristics of M35 high speed steel by electron beam smelting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(4): 182-190. doi: 10.7513/j.issn.1004-7638.2021.04.030

电子束熔炼M35高速钢的热变形特征的研究

doi: 10.7513/j.issn.1004-7638.2021.04.030
基金项目: 国家重点研发计划资助项目(2019YFA0705300);国家自然科学基金资助项目(91860123)
详细信息
    作者简介:

    吴明慧(1992−),女,河南焦作人,硕士研究生,主要研究方向为电子束熔炼高速钢材料,E-mail:13069472128@163.com

    通讯作者:

    王轶农,教授,博士,E-mail:wynmm@dlut.edu.cn

  • 中图分类号: TF134,TG142.45

Study on the hot deformation characteristics of M35 high speed steel by electron beam smelting

  • 摘要: 利用Gleeble-3500热模拟试验机对电子束熔炼M35高速钢进行了热压缩试验,研究了其在变形温度为1273~1423 K,应变速率为0.01~10 s−1条件下的热变形行为,研究了其碳化物组织的演变规律,建立了电子束熔炼M35高速钢的热变形本构方程,并通过动态材料模型(DMM)建立了电子束熔炼M35高速钢的热加工图。同时将其与普通熔炼M35高速钢的热变形行为进行比较分析。结果表明,电子束熔炼M35高速钢的真应力-应变曲线符合动态再结晶曲线特征,在高应变速率下曲线出现锯齿特征,流变应力随应变速率的提高和温度的减小而增大。热变形过程中的变形行为可用双曲正弦函数来表征,其平均激活能为504.642 kJ/mol。通过热加工图能展现M35高速钢的热变形失稳区域,得到其热加工的最佳变形条件的区域为:变形温度为1400~1423 K, 应变速率为0.01~1 s−1
  • 图  1  铸态电子束熔炼M35高速钢的组织形貌

    Figure  1.  Microstructure of as-cast M35 high speed steel melted by electron beam

    图  2  电子束熔炼M35高速钢在温度为1373 K时各应变速率下的微观组织

    Figure  2.  Microstructure of electron beam smelting M35 high speed steel at various strain rates deformed at temperature of 1 373 K

    (a) 0.01 s−1; (b) 0.1 s−1; (c) 1 s−1; (d) 10 s−1

    图  3  电子束熔炼M35高速钢在应变速率为0.1 s−1时各温度下的微观组织

    Figure  3.  Microstructure of electron beam smelting M35 high speed steel deformed at various temperature with a strain rate of 0.1 s−1

    (a) 1 273 K; (b) 1 323 K; (c) 1 373 K; (d) 1 423 K

    图  4  电子束熔炼M35高速钢在不同温度和应变速率条件下的真应力-应变曲线

    Figure  4.  True stress-true strain curves for electron beam smelting M35 high speed steel during hot deformation under different conditions

    图  5  M35高速钢在不同应变速率下的峰值应力随温度变化的规律曲线

    (a)电子束熔炼;(b)电渣重熔

    Figure  5.  Curves of peak stress change with deformation temperature with different deformation rates for electron beam smelting M35 high speed steel

    图  6  不同温度下应力与应变速率的关系曲线

    Figure  6.  Relationship between stress and strain rate of steel deformed at different temperatures

    (a) ${\sigma _P} - \ln \dot \varepsilon $; (b) $\ln {\sigma _P} - \ln \dot \varepsilon $

    图  7  电子束熔炼M35高速钢在不同变形条件下个参数的对应关系

    Figure  7.  Relations among various parameters of electron beam smelting M35 high speed steel under different deformation conditions

    (a) lnsinh (ασ) -1000/T ; (b) ln (strain rate)- lnsinh(ασ)

    图  8  lnZ与lnsinh(ασ)的线性拟合

    Figure  8.  Linear fitting of lnZ and lnsinh(ασ)

    图  9  电子束熔炼M35高速钢在真应变为0.7时的热加工图

    Figure  9.  Hot processing map with true strain of 0.7 for electron beam smelting M35 high speed steel

    表  1  电子束熔炼M35高速钢的化学成分

    Table  1.   Chemical compositions of the EBS M35 steel %

    WMoCrVCoCSiMnPSFe
    原料6.425.064.171.854.620.930.440.210.0290.004Bal.
    熔炼后6.424.904.181.844.510.930.350.090.0270.004Bal.
    下载: 导出CSV
  • [1] (邓玉昆, 陈景榕, 王世章. 高速钢[M]. 北京: 冶金工艺出版社, 2002.)

    Deng Yukun, Chen Jingrong, Wang Shizhang. High speed steel[M]. Beijing: Metallurgical Industry Press, 2002.
    [2] (梁伟. 高速钢的碳化物控制研究[J]. 钢铁钒钛, 2020, 41(4): 130−138.)

    Liang Wei. Study on the carbide control of high speed steel[J]. Iron Steel Vanadium Titanium,2020, 41(4): 130−138.
    [3] Wu Hongqing. Research status and development of high speed steel at home and abroad[J]. Mold Making, 2017,17(12):93−100. (吴红庆. 国内外高速钢的研究现状和进展[J]. 模具制造, 2017,17(12):93−100. doi: 10.3969/j.issn.1671-3508.2017.12.023
    [4] Tany, Youxg, Youqf, et al. Microstructure and deformation behavior of nickel based superalloy Inconel 740 prepared by electron beam smelting[J]. Materials Characterization, 2016,114:267−276. doi: 10.1016/j.matchar.2016.03.009
    [5] Youxg, Tany, Youqf, et al. Preparation of Inconel 740 superalloy by electron beam smelting[J]. Journal of Alloys & Compounds, 2016,676:202−208.
    [6] Fischmeister H F, Riedl R, Karagöz S. Solidification of high-speed tool steels[J]. Metallurgical Transactions A, 1989,20(10):2133−2148. doi: 10.1007/BF02650299
    [7] (陈雷雷. 高速钢合金碳化物控制研究[D]. 南京: 东南大学, 2016.)

    Chen Leilei. Study on alloy carbides control in high speed steel[D].Nanjing:Southeast University, 2016.
    [8] (王栋. 稀土对M35高速钢组织和性能的影响[D]. 南京: 东南大学, 2005.)

    Wang Dong. The effecits of Re on performance and microstructure of M35 high speed steel[D].Nanjing:Southeast University, 2005.
    [9] (周清. 塑性变形微观组织及控制[M]. 北京: 科学出版社, 2016.)

    Zhou Qing. Plastic deformation microstructure and control[M]. Beijing: Science Press, 2016.
    [10] Niu Sizhe,Kou Hongchao. The characteristics of serration in Al0.5CoCrFeNi high entropy alloy[J]. Materials Science & Engineering A, 2017,702:96−103.
    [11] Wang Jian. Hot deformation behaviors of M35 high speed steell[J]. Journal of Plasticity Engineering, 2016,23(6):144−150. (王坚. M35高速钢的热变形行为研究[J]. 塑性工程学报, 2016,23(6):144−150.
    [12] John J Jonas, Xavier Quelence, Lan Jiang. The avrami kinetics of dynamic recrystallization[J]. Acta Mater, 2009,33(2):1−9.
    [13] Medina S F, Hernandez C A. Modeling of the dynamic recrystallization of austenite in low alloy and micro-alloyed steels[J]. Acta Mater, 1996,44(1):165−171. doi: 10.1016/1359-6454(95)00154-6
    [14] Zener C, Hollomon H. Effect of strain-rate upon the plastic flow of steel[J]. J. Appl. Phys, 1944,15:22−27. doi: 10.1063/1.1707363
    [15] Liu Jiantao, Chang Hongbing, Wu Ruiheng, et al. Investigation on hot deformation behavior of AISI T1 high speed steel[J]. Mater Charact, 2000,(45):175−186.
    [16] Suresh K, Rao K P, Prasad Y, et al. Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy[J]. Materials Science and Engineering A, 2013,588:272−279. doi: 10.1016/j.msea.2013.09.031
    [17] Dharmendra C, Rao K P, Zhao F, et al. Effect of silicon content on hot working, processing maps, and microstructural evolution of cast TX32-0.4 Al magnesium alloy[J]. Materials Science and Engineering A, 2014,606:11−23. doi: 10.1016/j.msea.2014.03.087
    [18] Kang F W, Zhang G Q, Sun J F, et al. Hot deformation behavior of a spray formed superalloy[J]. Journal of Materials Processing Technology, 2008,204(1):147−151.
    [19] Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883−1892. doi: 10.1007/BF02664902
    [20] Pradad Y. Recent advances in the science of mechanical processing[J]. Indian Journal of Technology, 1990,28(6−8):435−451.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  37
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-22
  • 刊出日期:  2021-08-10

目录

    /

    返回文章
    返回